Skip to main content
Log in

Precambrian basement in the Rheic suture zone of the Central European Variscides (Odenwald)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Detrital zircon age spectra of Ediacaran paragneiss from the Rheic suture between the Rhenohercynian Zone and Saxothuringian Zone suggest that they originated from different parts of peri-Gondwana. The paragneiss from the Northern Phyllite Belt displays an age spectrum of detrital zircons with a high amount of Neoproterozoic (82%) and Mesoproterozoic zircons (11%) typical for Amazonian provenance, whereas the spectrum from the metagreywacke of the Odenwald (Mid-German Crystalline Zone) shows a Mesoproterozoic age gap which is correlated with the West African Craton. The metagreywacke of the Odenwald contains 20% Paleoproterozoic and 32% Archean zircons, whereas the paragneiss of the Northern Phyllite Belt (Wartenstein Crystalline) contains only 6% Paleoproterozoic and no Archean zircons. The paleoposition of the basement of Northern Phyllite Belt was proximal to the Avalonian magmatic arc of the London–Brabant high. The Armorican metagreywacke of the Odenwald occupied a distal position to a Neoproterozoic magmatic arc, probably in a back-arc basin related to the West African Craton. Such a U–Pb age spectrum of detrital zircons together with a Mesoproterozoic age gap is typical for sediments of Armorica in Europe during the Ediacaran to Carboniferous. Neoproterozoic igneous rocks extruded at 566 ± 2 Ma forming a volcano-clastic sequence of the Cadomian magmatic arc which is the wall rock of the Silurian to Carboniferous plutons of the entire West Odenwald. This is the first occurrence of an extensive Cadomian crystalline basement in the Mid-German Crystalline Zone. Metagranite dykes crosscut the foliation of the Cadomian para- and orthogneiss at 542 ± 3 Ma. The deformation and migmatization of the Cadomian basement are bracketed between 566 and 542 Ma. A similar late Cadomian event is known from the Bohemian Massif and the Armorican Massif. Large Cadomian plutons with an age around 540 Ma, like that of the northern Odenwald, are common for Armorica. Silurian to Devonian granitoids (434 ± 4 Ma, 411 ± 5 Ma) are witness to an active margin along the northern boundary of Armorica. The Cadomian basement of the Odenwald together with the Palaeozoic granitoids is overprinted by a high-grade metamorphism at 384 ± 4 Ma (U–Pb on zircon) and cooled down below ca. 500 °C at 370 Ma (K–Ar ages of amphibole; U–Pb on titanite). Such a combination of late Cadomian and early Variscan ages could be correlated with the Münchberger Nappe, the Tepla–Barrandian Unit, Central Armorican Domain and the Massif Central.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Adusumalli CI, Schubert W (2001) Geochemistry of metabauxites in the Bergsträsser Odenwald (Mid German Crystalline Rise) and palaeoenvironmental. Implic Mineral Petrol 72:45–62

    Google Scholar 

  • Ahrendt H, Clauer N, Hunziker JC, Weber K (1983) Migration of folding and metamorphism in the Rheinisches Schiefergebirge deduced from K–Ar and Rb–Sr age determinations. In: Martin H, Eder FW (eds) Intracontinental fold belts. Springer, Berlin, pp 323–338

    Google Scholar 

  • Altenberger U, Besch T (1993) The Böllstein Odenwald: evidence for pre- to early Variscan plate convergence in the Central European Variscides. Geol Rundsch 82:475–488

    Google Scholar 

  • Altenberger U, Besch T, Mocek B, Zaipeng Y, Yong S (1990) Geochemie und Geodynamik des Böllsteiner Odenwaldes. Mainzer geow Mitt 19:183–200

    Google Scholar 

  • Altherr R, Henes-Klaiber U, Hegner E, Satir M, Langer C (1999) Plutonism in the Variscan Odenwald (Germany): from subduction to collision. Int J Earth Sci 88:422–443

    Google Scholar 

  • Anderle H-J, Franke W, Schwab M (1995) Stratigraphy of the phyllite zone in tectonostratigraphic evolution of the Central and East European orogens. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian geology of Central and Eastern Europe. Springer, Berlin, pp 99–107

    Google Scholar 

  • Anthes G, Reischmann T (2001) Timing of granitoid magmatism in the eastern mid-German crystalline rise. J Geodyn 31:119–143

    Google Scholar 

  • Bachtadse V, Torsvik TH, Tait JA, Soffel HC (1995) Paleomagnetic constraints on the paleogeographic evolution of Europe during the Paleozoic. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-permian geology of Central and Eastern Europe. Springer, Berlin, pp 567–578

    Google Scholar 

  • Bahlburg H, Vervoort JD, Du Frane SA (2010) Plate tectonic significance of Middle Cambrian and Ordovician siliciclastic rocks of the Bavarian Facies, Armorican Terrane Assemblage, Germany—U–Pb and Hf isotope evidence from detrital zircons. Gondwana Res 17:223–235

    Google Scholar 

  • Belka Z, Ahrendt H, Franke W, Wemmer K (2000) The Baltica-Gondwana suture in central Europe: evidence from K–Ar ages of detrital muscovites and biogeographical data. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt, vol 179. Geological Society, London, Special Publications, London, pp 87–102

    Google Scholar 

  • Belka Z, Valverde-Vaquero P, Dörr W, Ahrendt H, Wemmer K, Franke W, Schäfer J (2002) Accretion of first Gondwana-derived terranes at the margin of Baltica. In: Winchester JA, Pharaoh TC, Verniers J (eds) Palaeozoic amalgamation of Central Europe, vol 201. Geological Society, London, Special Publications, London, pp 19–36

    Google Scholar 

  • Bierther W (1941) Geologie des unteren Hahnenbachtales bei Kirn a. d. Nahe. Jahresber Reichsst Bodenforsch 61:109–156

    Google Scholar 

  • Brätz H (2000) Radiometrische Altersdatierungen und geochemischen Untersuchungen von Orthogneisen, Granite und Granitporphyren aus dem Ruhlaer Kristallin, Mitteldeutsche Kristallinzone. Dissertation Univ. Würzburg, Germany, pp 1–151

  • Brinkmann R (1948) Die mitteldeutsche Schwelle. Geol Rundsch 36:55–66

    Google Scholar 

  • Buschmann B (1995) Geotectonic facies analysis of the Rothstein Formation (Neoproterozoic, Saxothuringian Zone, Germany). Unpublished Thesis Bergakademie Freiberg

  • Clark AH, Scott DJ, Sandeman HA, Bromley AV, Farrar E (1998) Siegenian generation of the Lizard ophiolite: U–Pb zircon age data for plagiogranite, Porthkerries, Cornwall. J Geol Soc Lond 155:595–598

    Google Scholar 

  • Cocks LRM, Fortey RA (2009) Avalonia—a long-lived terrane in the Lower Palaeozoic? Geol Soc Lond Spec Publ 325:141–154

    Google Scholar 

  • Dickinson WR, Gehrels GE (2009) Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database. Earth Planet Sci Lett 288:115–125

    Google Scholar 

  • Dittmar U, Oncken O (1992) Anatomie und Kinematik eines passiven varistischen Kontinentalrandes—zum Strukturbau des südwestlichen Rheinischen Schiefergebirges. Frankf Geowiss Arb Ser A 11:34–37

    Google Scholar 

  • Dombrowski A, Henjes-Kunst F, Höhndorf A, Kröner A, Okrusch M, Richter P (1995) Orthogneisses in the Spessart Crystalline Complex, north-west Bavaria: Silurian granitoid magmatism at an active continental margin. Geol Rundsch 84:399–411

    Google Scholar 

  • Dörr W (1986) Stratigraphie, Stoffbestand und Fazies der Giessener Grauwacke (E’ Rheinisches Schiefergebirge). Diss Universität Giessen, pp 1–134

  • Dörr W, Zulauf G, Fiala J, Franke W, Vejnar Z (2002) Neoproterozoic to Early Cambrian history of an active plate margin in the Teplá-Barrandian unit—a correlation of U–Pb isotopic-dilution-TIMS ages (Bohemia, Czech Republic). Tectonophysics 352:65–85

    Google Scholar 

  • Dörr W, Zulauf G, Gerdes A, Lahaye J, Kowalczyk G (2015) A hidden Tonian basement in the eastern Mediterranean: age constraints from U–Pb data of magmatic and detrital zircons of the External Hellenides (Crete and Peloponnesus). Precambrian Res 258:83–108

    Google Scholar 

  • Dörr W, Zulauf G, Gerdes A, Loeckle F (2017) Provenance of Upper Devonian clastic (meta)sediments of the Böllstein Odenwald (Mid-German-Crystalline-Zone, Variscides). Int J Earth Sci 106:2927–2943

    Google Scholar 

  • Drost K (2008) Sources and geotectonic setting of Late Neoproterozoic-Early Paleozoic volcano-sedimentary successions of the Teplá-Barrandian unit (Bohemian Massif): evidence from petrographical, geochemical, and isotope analyses. Geologica Saxonica 54:1–165

    Google Scholar 

  • Dubińska E, Bylina P, Kozlowski A, Dörr W, Nejbert K (2004) U–Pb dating of serpentinization: hydrothermal zircon from a metasomatic rodingite shell (Sudetic ophiolite, SW Poland). Chem Geol 203:183–203

    Google Scholar 

  • Eckelmann K, Nesbor D, Königshof P, Linnemann U, Hofmann M, Lange J-M, Sagawe A (2013) Plate interactions of Laurussia and Gondwana during the formation of Pangaea-Constraints by U–Pb LA-SF-ICP-MS detrital zircon ages of Devonian and Early Carboniferous siliciclastics of the Rheinisches Schiefergebirge. (Rhenohercynian zone, Central European Variscides). Gondwana Res 25:1484–1500

    Google Scholar 

  • Fedo CM, Sircombe KN, Rainbird RH (2003) Detrital zircon analysis of the sedimentary record. In: Hanchar JM, Hoskin PWO (eds) Zircon. Mineralogical Society of America and Geochemistry Society, reviews in mineralogy and geochemistry, vol 53. Washington, DC, pp 277–303

  • Finger F, von Quadt A (1995) U/Pb ages of zircons from a plagiogranite-gneiss in the south-eastern Bohemian Massif, Austria—further evidence for an important early Paleozoic rifting episode in the eastern Variscides. Schweiz Mineral Petrogr Mitt 75:265–270

    Google Scholar 

  • Franke W (1989) Tectonostratigraphic units in the Variscan belt of central Europe. Geol Soc Am Spec Pap 230:67–89

    Google Scholar 

  • Franke W, Oncken O (1990) Geodynamic evolution of the north-central Variscides: a comic strip. In: Freeman R, Giese P, Mueller S (eds) The European geotraverse: integrative studies. European Science Foundation, Strasbourg, pp 187–194

    Google Scholar 

  • Frei D, Gerdes A (2008) Accurate and precise in situ zircon U–Pb age dating with high spatial resolution and high sample through put by automated LA-SF-ICP-MS. Chem Geol 261(3–4):261–270

    Google Scholar 

  • Geisler T, Vinx R, Martin-Gombojav N, Pidgeon RT (2005) Ion microprobe (SHRIMP) dating of detrital zircon grains from quartzites of the Eckergneiss Complex, Harz Mountains (Germany): implications for the provenance and the geological history. Int J Earth Sci (Geol Rundsch) 94:369–384

    Google Scholar 

  • Hajná J, Žák J, Dörr W (2017) Time scales and mechanisms of growth of active margins of Gondwana: a model based on detrital zircon ages from the Neoproterozoic to Cambrian Blovice accretionary complex, Bohemian Massif. Gondwana Res 42:63–83

    Google Scholar 

  • Hartmann LA, Santos JOS (2004) Predominance of high Th/U, magmatic zircon in Brazilian Shield sandstones. Geology 32:73–76

    Google Scholar 

  • Haverkamp J (1991) Detritusanalyse unterdevonischer Sandsteine des Rheinisch-Ardennischen Schiefergebirges und ihre Bedeutung für die Rekonstruktion der sedimentliefernden Hinterländer. Thesis Techn Univ Aachen, p 156

  • Heinrichs T, Siegesmund S, Frei D, Drobe M, Schulz B (2012) Provenance signatures from whole-rock geochemistry and detrital zircon ages of metasediments from the Austroalpine basement south of the Tauern Window (Eastern Tyrol, Austria). Geo Alp 9:156–185

    Google Scholar 

  • Henes-Klaiber U (1992) Zur Geochemie der variszischen Granitoide des Bergsträsser Odenwalds. Thesis, University of Karlsruhe

  • Hindel R (1975) Geochemische Untersuchung der Paragneise zwischen Heppenheim und Lindenfels/Odenwald. In: Amstutz GC, Meisl S, Nickel E (eds) Mineralien und Gesteine im Odenwald, vol 27. Aufschluß Sonderband, Heidelberg, pp 135–139

    Google Scholar 

  • Kirsch H, Kober B, Lippolt HJ (1988) Age of intrusion and rapid cooling of the Frankenstein gabbro (Odenwald, SW-Germany) evidenced by 40Ar/39Ar and single zircon 207Pb/206Pb measurements. Geol Rdsch 77(3):693–711

    Google Scholar 

  • Klemm G (1918) Erläuterungen zur geologischen Karte. Großherzogthum Hessen, 1:25 000, Blatt Neunkirchen, 2nd edn. Großherzoglicher Staatsverlag, Darmstadt, p 81

  • Klemm DD, Weber-Diefenbach K (1975) Zur Genese du Odenwälder Amphibolite, Gneise und Basite. In: Amstutz GC, Meisl S, Nickel E (eds) Mineralien und Gesteine imOdenwald, vol 27. Aufschluß Sonderband, Heidelberg, pp 141–148

    Google Scholar 

  • Koglin N, Zeh A, Franz G, Schüssler U, Glodny J, Gerdes A, Brätz H (2018) From Cadomian magmatic arc to Rheic ocean closure: the geochronological-geochemical record of nappe protoliths of the Münchberg Massif, NE Bavaria (Germany). Gondwana Res 55:135–152

    Google Scholar 

  • Kossmat F (1927) Gliederung des varistischen Gebirgsbaues. Abh d Sächs Geol Landesamts 1:1–39

    Google Scholar 

  • Kreher B (1994) Petrologie und Geochemie der Gabbrointrusionen des Frankensteins (Odenwald). Geol Jb Hessen 122:81–122

    Google Scholar 

  • Kreuzer H, Harre W (1975) K/Ar-Altersbestimmungen an Hornblenden und Biotiten des Kristallinen Odenwaldes. In: Amstutz GC, Meisl S, Nickel E (eds) Mineralien und Gesteine im Odenwald, vol 27. Aufschluß Sonderband, Heidelberg, pp 71–77

    Google Scholar 

  • Kreuzer H, Seidel E, Schüssler U, Okrusch M, Lenz K-L, Raschka H (1989) K–Ar geochronology of different tectonic units at the northwestern margin of the Bohemian massif. Tectonophysics 157:149–178

    Google Scholar 

  • Krohe A (1994) Verformungsgeschichte in der mittleren Kruste eines magmatischen Bogens. Geotekt Forsch 80:1–147

    Google Scholar 

  • Krohe A, Willner AP (1995) The Odenwald crystalline complex. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-permian geology of Central and Eastern Europe. Springer, Berlin, pp 174–181

    Google Scholar 

  • Kröner A, Jaeckel P, Hegner E, Opletal M (2001) Single zircon ages and whole-rock Nd isotopic systematics of early Palaeozoic granitoid gneiss from the Czech and Polish Sudetes (Jizerske hory, Krkonose Mountains and Orlice-Sneznik Complex). Int J Earth Sci 90:304–324

    Google Scholar 

  • Kupfahl HG, Meisl S, Kümmerle E (1972) Erläuterungen zur Geologischen Karte von Hessen 1:25000 Blatt Nr. 6217 Zwingenberg a. d. Bergstraße. Hessisches Landesamt für Bodenforschung, Wiesbaden, pp 1–276

  • Linnemann U, Gemlich M, Tichomirowa M, Buschmann B, Nasdala L, Jonas P, Lützer H, Bomback K (2000) From Cadomian subduction to Early Paleozoic rifting: the evolution of Saxo-Thuringia at the margin of Gondwana in the light of single zircon geochronology and basin development (Central European Variscides, Germany). Geol Soc Lond Spec Publ 179:131–153

    Google Scholar 

  • Linnemann U, McNaughton NJ, Romer RL, Gehmlich M, Drost K, Tonk C (2004) West African provenance for Saxo-Thuringia (Bohemian Massif): did Armorica ever leave pre-Pangean Gondwana?—U/Pb-SHRIMP zircon evidence and the Nd isotopic record. Int J Earth Sci 93:683–705

    Google Scholar 

  • Linnemann U, Gerdes A, Drost K, Buschmann B (2007) The continuum between Cadomian Orogenesis and opening of the Rheic Ocean: constraints from LA–ICP–MS U–Pb zircon dating and analysis of plate-tectonic setting (Saxo-Thuringian zone, NE Bohemian massif, Germany). In: Linnemann U, Nance RD, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: From Avalonian–Cadomian Active Margin to Alleghenian–Variscan Collision. Geological Society of America Special Paper, vol 423, pp 61–96

  • Linnemann U, Pereira F, Jeffries TE, Drost K, Gerdes A (2008) The Cadomian Orogeny and the opening of the Rheic Ocean: the diachrony of geotectonic processes constrained by LA-ICP-MS U–Pb zircon dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian and Bohemian Massifs). Tectonophysics 461:21–43

    Google Scholar 

  • Linnemann U, Herbosch A, Liégeois J-P, Pin C, Gärtner A, Hofmann M (2012) The Cambrian to Devonian odyssey of the Brabant Massif within Avalonia: a review with new zircon ages, geochemistry, Sm–Nd isotopes, stratigraphy and palaeogeography. Earth Sci Rev 112:126–154

    Google Scholar 

  • Linnemann U, Gerdes A, Mandy Hofmann M, Marko L (2013) The Cadomian Orogen: neoproterozoic to Early Cambrian crustal growth and orogenic zoning along the periphery of the West African Craton—constraints from U–Pb zircon ages and Hf isotopes (Schwarzburg Antiform, Germany). Precambrian Res 244:236–278

    Google Scholar 

  • Linnemann U, Pidal AP, Hofmann M, Drost K, Quesada C, Gerdes A, Marko L, Gärtner A, Zieger J, Ulrich J, Krause R, Vickers-Rich P, Horak J (2018) A ~ 565 Ma old glaciation in the Ediacaran of peri-Gondwanan West Africa. Int J Earth Sci (Geol Rundsch) 107:885–911

    Google Scholar 

  • Lippolt HJ (1986) Nachweis altpaläozoischer Primäralter (Rb–Sr) und karbonischer Abkühlungsalter (K–Ar) der Muskovit-Biotit-Gneise des Spessarts und der Biotit-Gneise des Böllsteiner Odenwaldes. Geol Rundsch 75(3):569–583

    Google Scholar 

  • Ludwig KR (2001) User’s manual for Isoplot/Ex version 2 49, a geochronological toolkit for microsoft excel. Berkley Geochronology Center Special Publication 1a, Berkley CA USA

  • Ludwig KR, Mundil R (2002) Extracting reliable U–Pb ages and errors from complex populations of zircons from Phanerozoic tuffs. Geochim Cosmochim Acta 66:463

    Google Scholar 

  • Mandl M, Kurz W, Hauzenberger C, Fritz H, Klötzli U, Schuster R (2018) Pre-alpine evolution of the Seckau Complex (Austroalpine basement/Eastern Alps): constraints from in situ LA-ICP-MS U\Pb zircon geochronology. Lithos 296–299:412–430

    Google Scholar 

  • Massonne H-J (1995) III.C.4 Metamorphic evolution. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian geology of central and eastern Europe, IGCP 233. Springer, Berlin, pp 132–137

    Google Scholar 

  • Massonne H-J, Schreyer W (1983) A new experimental phengite barometer and its application to a Variscan subduction zone at the southern margin of the Rhenohercynicum. Terra Abstr 3:187

    Google Scholar 

  • Matte P (1986) Tectonics and plate tectonics model for the Variscan Belt of Europe. Tectonophysics 126:329–374

    Google Scholar 

  • Matthes S, Okrusch M, Richter P (1972) Zur Migmatitbildung im Odenwald. N Jb Mineral Abh 116:225–267

    Google Scholar 

  • Meisl S (1990) Metavolcanic rocks in the Northern Phyllite Zone at the southern margin of the Rhenohercynian belt. In: Field guide: mid-German crystalline rise and Rheinisches Schiefergebirge. Int Conf Paleozoic orogens in central Europe, Göttingen Giessen, pp 25–42

  • Meisl S, Kreuzer H, Höhndorf A (1989) Metamorphose Bedingungen und -Alter des Kristallins am Wartenstein bei Kirn/Nahe. Vortrag, 5. Rundgespräch “Geodynamik des europaischen Variszikums”. Braunschweig 16.-18.11.1989

  • Molzahn M, Anthes G, Reischmann T (1998) Single zircon Pb/Pb age chronology and isotope systematics of the Rhenohercynian basement. Terra Nostra 98(1):67–68

    Google Scholar 

  • Murphy JB, Fernández-Suárez J, Jeffries T, Strachan RA (2004a) U–Pb (LA–ICP-MS) dating of detrital zircons from Cambrian clastic rocks in Avalonia: erosion of a Neoproterozoic arc along the northern Gondwanan margin. J Geol Soc Lond 161:243–254

    Google Scholar 

  • Murphy JB, Pisarevsky SA, Nance D, Keppie JD (2004b) Neoproterozoic-Early Palaeozoic evolution of peri-Gondwanan terranes: implications for Laurentia-Gondwana connections. Int J Earth Sci 93:659–682

    Google Scholar 

  • Okrusch M (1995) Metamorphic evolution. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian geology of Central and Eastern Europe. Springer, Berlin, pp 201–213

    Google Scholar 

  • Okrusch M, Raumer JV, Matthes S, Schubert W (1975) Mineralfazies und Stellung der Metamorphite im kristallinen Odenwald. In: Amstutz GC, Meisl S, Nickel E (eds) Mineralien und Gesteine im Odenwald, vol 27. Aufschluß Sonderband, Heidelberg, pp 109–134

    Google Scholar 

  • Okrusch M, Geyer G, Lorenz J (2011) Sammlung geol Führer 106: Spessart: 386, Berlin (Borntraeger)

  • Oliver GJH, Corfu F, Krogh TE (1993) U–Pb ages from SW Poland: evidence for a Caledonian suture zone between Baltica and Gondwana. J. Geol Soc Lond 150:355–369

    Google Scholar 

  • Oncken O (1997) Transformation of a magmatic arc and an orogenic root during oblique collision and it’s consequences for the evolution of the European Variscides (Mid-German Crystalline Rise). Geol Rundschau 86:2–20

    Google Scholar 

  • Oncken O, Winterfeld CV, Dittmar U (1999) Accretion of a rifted passive margin: the late Paleozoic Rhenohercynian fold and thrust belt (Middle European Variscides). Tectonics 18:75–91

    Google Scholar 

  • Pasteels P, Dore F (1982) Age of the Vire Carolles granite. In: Odin GS (ed) Numerical dating in stratigraphy. Wiley, New York, pp 784–790

    Google Scholar 

  • Peucat JJ (1983) Géochronologie des roches métamorphiques (Rb–Sr and U– Pb). Exemples choisis au Groenland, en Laponie, dans le Massif Armoricain et en Grande Kabylie. Mémoire de la Société Géologique et Minéralogique de Bretagne, p 28

  • Peucat JJ (1986) Behaviour of Rb–Sr whole rock and U–Pb zircon systems during partial melting as shown in migmatitic gneisses from the St. Malo Massif, NE Brittany, France. J Geol Soc Lond 143:875–886

    Google Scholar 

  • Pupin JP (1980) Zircon and granite petrology. Contrib Mineral Petrol 73:207–220

    Google Scholar 

  • Raumer vJ (1973) Die mineralfazielle Stellung der Metapelite und Metagrauwacken zwischen Heppenheim und Reichelsheim (Odenwald). N Jb Mineral Abh 118:313–336

    Google Scholar 

  • Reischmann T, Anthes G, Jaekel P, Altenberger U (2001) Age and origin of the Böllsteiner Odenwald. Miner Petrol 72:29–44

    Google Scholar 

  • Schafft R (1985) Makro- und mikrostrukturelle Untersuchungen der Metamorphen Zone im südlichen Hunsrück. Thesis Univ Göttingen

  • Scholtz H (1934) Die Tektonik des Steinkohlenbeckens im Saar-Nahe-Gebiet und die Entstehungsweise der Saar-Saale-Senke. Z Dtsch Geol Ges 85:316–382

    Google Scholar 

  • Schubert W (1968) Die Amphibolite des prävaristischen Schieferrahmens im Bergsträsser Odenwald. N Jb Mineral Abh 108:69–110

    Google Scholar 

  • Schubert W, Lippolt HJ, Schwarz W (2001) Early to middle Carboniferous hornblende 40Ar/39Ar ages of amphibolites and gabbros from the Bergsträsser Odenwald. Mineral Petrol 72:113–132

    Google Scholar 

  • Schulz B (2013) Monazite EMP-Th–U–Pb age pattern in Variscan metamorphic units in the Armorican Massif (Brittany, France). Z Dt Ges Geowiss 164(2):313–335

    Google Scholar 

  • Siebel W, Eroglu S, Shang CK, Rohrmüller J (2012) Zircon geochronology, elemental and Sr–Nd isotope geochemistry of two Variscan granitoids from the Odenwald-Spessart crystalline complex (Mid-German Crystalline Rise). Mineral Petrol 105:187–200

    Google Scholar 

  • Sláma J, Dunkley DJ, Kachlík V, Kusiak MA (2008) Transition from island-arc to passive setting on the continental margin of Gondwana: U–Pb zircon dating of Neoproterozoic metaconglomerates from the SE margin of the Teplá–Barrandian Unit, Bohemian Massif. Tectonophysics 461(1–4):44–59

    Google Scholar 

  • Söllner F, Köhler H, Müller-Sohnius D (1981) Rb/Sr-Altersbestimmungen an Gesteinen der Münchberger Gneismasse (MM), NE Bayern—Teil 2, Mineraldatierungen. N Jahrb Miner Abh 142(2):178–198

    Google Scholar 

  • Sommermann A-E, Anderle H-J, Todt W (1994) Das Alter des Quarzkeratophyrs der Krausaue bei Rüdesheim am Rhein (Blatt 6013 Bingen, Rheinisches Schiefergebirge). Geol Jahrb Hessen 122:143–157

    Google Scholar 

  • Stein E (1996) Untersuchungen zur Genese der Flasergranitoid-Zone des zentralen Odenwaldes—Magmatische und/oder tektonische Gefüge. Z Geol Wiss 24(5/6):573–583

    Google Scholar 

  • Stein E (2000) Zur Platznahme von Granitoiden—Vergleichende Fallstudien zu Gefügen und Platznahmemechanismen aus den White-Inyo Mountains, California, USA und dem Bergsträsser Odenwald. Geotekt Forsch 93:1–344

    Google Scholar 

  • Stein E (2001) The geology of the Odenwald crystalline complex. Mineral Petrol 72:7–28

    Google Scholar 

  • Tait JA, Bachtadse V, Franke W, Soffel H (1997) Geodynamic evolution of the European Variscan fold belt:palaeomagnetic and geological constraints. Geol Rundsch 86:585–598

    Google Scholar 

  • Tait JA, Schatz M, Bachtadse V, Soffel H (2000) Palaeomagnetism and Palaeozoic palaeogeography of Gondwana and European terranes. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt, vol 179. Geological Society, London, Special Publications, London, pp 21–34

  • Teipel U (2003) Obervendischer und Unterordovizischer Magmatismus im Bayerischen Wald: Geochronologische (SHRIMP), geochemische und isotopen-geochemische Untersuchungen an Metamagmatiten aus dem Westteil des Böhmischen Massivs. Münchner Geol Hefte 33:1–98

    Google Scholar 

  • Timmermann H, Štědrá V, Gerdes A, Noble SR, Parrish RR, Dörr W (2004) The problem of dating high-pressure metamorphism: a U–Pb isotope and geochemical study on eclogites and related rocks of the Mariánské Lázně Complex, Czech Republic. J Petrol 45:1311–1338

    Google Scholar 

  • Timmermann H, Dörr W, Krenn E, Finger F, Zulauf G (2006) Conventional and in situ geochronology of the Teplá Crystalline unit, Bohemian Massif: implications for the processes involving monazite formation. Int J Earth Sci 95:629–647

    Google Scholar 

  • Todt WA, Altenberger U, von Raumer J (1995) U-Pb data on zircons for the thermal peak of metamorphism in the Variscan Odenwald, Germany. Geologische Rundschau 84:466–472

    Google Scholar 

  • Valverde-Vaquero P, Dörr W, Belka Z, Franke W, Wiszniewska J, Schastok J (2000) U–Pb single-grain dating of detrital zircon in the Cambrian of central Poland: implications for Gondwana versus Baltica provenance studies. Earth Planet Sci Lett 184:225–240

    Google Scholar 

  • van Breemen O, Henderson J B, Loveridge W D, Thompson P H (1987) U–Pb zircon and monazite geochronology and zircon morphology of granulites and granite from the Thelon Tectonic Zone, Healey Lake and Artillery Lake map areas, NWT. Current research part A, Geological survey of Canada paper, vol 87, no 1A, pp 783–801

  • Weber K, Behr H-J (1983) Geodynamic interpretation of the mid European Variscides. In: Martin H, Eder FW (eds) Intracontinental fold belts—case studies in the Variscan Belt of Europe and in the Damara Belt in Namibia. Springer, Berlin, pp 427–469

    Google Scholar 

  • Weber-Diefenbach K (1974) Geochemische Untersuchungen an Biotit-Dioriten, Hornblende-Dioriten und Metamorphiten des mittleren kristallinen Odenwaldes. N Jb Mineral Abh 120:119–146

    Google Scholar 

  • Will TM, Lee S-H, Schmädicke E, Frimmel HE, Okrusch M (2015) Variscan terrane boundaries in the Odenwald-Spessart basement, Mid-German crystalline zone: new evidence from ocean ridge, intraplate and arc-derived metabasaltic rocks. Lithos 220–223:23–42

    Google Scholar 

  • Will TM, Schulz B, Schmädicke E (2017) The timing of metamorphism in the Odenwald-Spessart basement, Mid-German crystalline zone. Int J Earth Sci 106(5):1631–1649

    Google Scholar 

  • Will TM, Schmädicke E, Ling X-X, Li X-H, Li Q-L (2018) New evidence for an old idea: geochronological constraints for a paired metamorphic belt in the central European Variscides. Lithos 302–303:278–297

    Google Scholar 

  • Willner AP, Massone H-J, Krohe A (1991) Tectono-thermal evolution of a part of a Variscan magmatic arc: the Odenwald in the Mid-German Crystalline Rise. Geol Rundsch 80:369–389

    Google Scholar 

  • Willner AP, Barr SM, Gerdes G, Massonne HJ, White CE (2013) Origin and evolution of Avalonia: evidence from U–Pb and Lu–Hf isotopes in zircon from the Mira terrane, Canada, and the Stavelot-Venn Massif, Belgium. J Geol Soc Lond 170:769–784

    Google Scholar 

  • Willner AP, Gerdes A, Massonne HJ, van Staal CR, Zagorevski A (2014) Crustal evolution of the Northeast Laurentia Margin and the Peri-Gondwanan Microcontinent Ganderia Prior to and during closure of the Iapetus Ocean: U–Pb and Hf isotope evidence from Newfoundland. Geosci Can 41:345–363

    Google Scholar 

  • Zeh A (1996) Die Druck-Temperatur-Deformations-Entwicklung des Ruhlaer Kristallins (Mitteldeutsche Kristallinzone). Geotekton Forsch 86:1–214

    Google Scholar 

  • Zeh A, Gerdes A (2009) Baltica- and Gondwana-derived sediments in the Mid-German Crystalline Rise (Central Europe): implications for the closure of the Rheic ocean. Gondwana Res 17:254–263

    Google Scholar 

  • Zeh A, Will TM (2010) The Mid-German crystalline zone. In: Linnemann U, Romer RL (eds) Pre-Mesozoic geology of Saxo-Thuringia—from the Cadomian active margin to the Variscan Orogen. Schweizerbart, Stuttgart, pp 195–220

    Google Scholar 

  • Zelazniewicz A, Dörr W, Bylina P, Franke W, Franke W, Haack U, Heinisch H, Schastok J, Grandmontagne N, Kulicki C, Haack U, Heinisch H, Schastok J, Kulicki C (2004) The eastern continuation of the Cadomian orogen: U–Pb zircon evidence from Saxo-Thuringian granitoids in south-western Poland and the northern Czech Republic. Int J Earth Sci (Geol Rundsch) 93:773–781

    Google Scholar 

  • Ziegler PA (1986) Geodyamic model for the Paleozoic crustal consolidation of Western and Central Europe. Tectonophysics 126:303–328

    Google Scholar 

  • Zulauf G, Schitter F, Riegler G, Finger F, Fiala J, Vejnar Z (1999) Age constraints on the Cadomian evolution of the Teplá Barrandian unit (Bohemian Massif) through electron microprobe dating of metamorphic monazite. Z Deutsch Geol Ges 150:627–639

    Google Scholar 

  • Zulauf G, Dörr W, Fiala J, Romano SS (2007) Crete and the Minoan Terranes: age constraints from U–Pb dating of detrital zircons. In: Linnemann U, Nance RD, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from Avalonian-Cadomian active margin to Alleghenian-Variscan collission. Geological Society of America Special Paper, vol 423, pp 401–409

  • Zulauf G, Dörr W, Fisher-Spurlock SC, Gerdes A, Chatzaras V, Xypolias P (2014) Closure of the paleotethys in the external hellenides: constraintsfrom U–Pb ages of magmatic and detrital zircons (Crete). Gondwana Res. https://doi.org/10.1016/j.gr.2014.06.011

    Google Scholar 

Download references

Acknowledgements

We are grateful to Janina Schastok and Linda Marko (Universität Frankfurta.M.) for their invaluable help with the isotopic analyses. The quality of the paper was improved by the comments of Jiří Žák (Praha) and Friedrich Finger (Salzburg). All of these are kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Dörr.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dörr, W., Stein, E. Precambrian basement in the Rheic suture zone of the Central European Variscides (Odenwald). Int J Earth Sci (Geol Rundsch) 108, 1937–1957 (2019). https://doi.org/10.1007/s00531-019-01741-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-019-01741-7

Keywords

Navigation