Deep learning methods for anomalies detection in social networks using multidimensional networks and multimodal data: a survey

Abstract

Anomaly in Online Social Network can be designated as an unusual or illegal activity of an individual. It can also be considered as an outlier or a surprising truth. Due to the emergence of social networking sites such as Facebook, Instagram, etc., the number of negative impacts of aggressive and bullying phenomena has increased exponentially. Anomaly detection is a problem of crucial importance which has attracted researchers since the 2000s. This problem is often carried out, thanks to deep learning, artificial intelligence and statistics. Several methods have been devoted to solving the problem of detecting abnormal behavior on social media, which are kept under three different types: structural methods which are based on the analysis of graphs of social networks, behavioral methods which are based on the extraction and analysis of user activities and hybrid methods which combine the two types of methods mentioned above. This survey reviews various methods of data mining for the detection of anomalies to provide a better assessment that can facilitate the understanding of this area.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. 1.

    Weibo Community Management Center for false rumor category: ehttp://service.account.Weibo.com/?type=5.

  2. 2.

    Abnormal Event Detection at 1000 FPS in MATLAB: http://www.cse.cuhk.edu.hk/ leojia/projects/detectabnormal/index.html.

  3. 3.

    Privacy Preserving Crowd Monitoring: Counting People without People Models or Tracking: http://www.svcl.ucsd.edu/projects/peoplecnt/.

  4. 4.

    Enron Email Dataset http://www.cs.cmu.edu/ enron/.

  5. 5.

    John Jay & ARTIS Transnational Terrorism Database: http://doitapps.jjay.cuny.edu/jjatt/index.php.

  6. 6.

    The Fake Project: http://wafi.iit.cnr.it/theFakeProject/.

  7. 7.

    Friendly note: https://www.fastfollowerz.com/closed/.

  8. 8.

    Twitterboost.com: http://twitterboost.com/.

  9. 9.

    Insider Threat Test Dataset: https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=508099.

  10. 10.

    NATOPS Aircraft Handling Signals Database: http://groups.csail.mit.edu/mug/natops/.

  11. 11.

    Discover scientific knowledge and stay connected to the world of science: https://www.researchgate.net/.

References

  1. 1.

    Albu, V.: Measuring customer behavior with deep convolutional neural networks. Broad Res Artificial Intell Neurosci 1(2), 74–79 (2016)

    Google Scholar 

  2. 2.

    Zhang, C.L.Z., Luo, P., Tang, X.: Learning social relation traits from faceimages, in: In International Conference on Computer Vision (ICCV), IEEE, Santiago, Chile, 3631–3639 (2015)

  3. 3.

    Banovic, N., Buzali, T., Chevalier, F., Mankoff, J.: A. Dey, Modeling and505understanding human routine behavior, in: In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, ACM, San Jose, California, USA, 248–260 (2016)

  4. 4.

    Hammou, M.D.: Analyse du comportement du consommateurdans le marché algérien des assurances. ENSSEA Alger, Alger, Algeria (2010)

  5. 5.

    Rakoczy, M., Bouzeghoub, A., Wegrzyn-Wolska, K., Lopes, A. G.: Users views on others–analysis of confused relation-based terms in social network, in: OTM Confederated International Conferences On the Move to Meaningful Internet Systems, Springer, 155–174 (2016)

  6. 6.

    Ramiandrisoa, F., Mothe, J.: Profil utilisateur dans les réseaux sociaux: Etat de l’art, in: CORIA 2017 - Conférence en Recherche d’Informations et Applications - 14th French Information Retrieval Conference, Marseille, France, 395–404 (2017)

  7. 7.

    Priya, T.S., Revathy, P.T., Pradeesh, T., Robin, C.R.R.: Design and development of an ontology based personal web search engine, in: S.K. Jena, B. Majhi (Eds.), Procedia Technology, Elsevier Ltd, 299–306 (2012)

  8. 8.

    Jin, L., Chen, Y., Wang, T., Hui, P., Vasilakos, A.V.: Understanding user behavior in online social networks: a survey. IEEE Commun. Mag. 51(9), 144–150 (2013)

    Article  Google Scholar 

  9. 9.

    Rakoczy, M.E., Bouzeghoub, A., Gancarski, A.L., Wegrzyn-Wolska, K.: Reputation prediction using influence conversion, in: 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE), IEEE, 43–48 (2018)

  10. 10.

    Rakoczy, M.E., Bouzeghoub, A., Wegrzyn-Wolska, K., Gancarski, A.L.: Exploring interactions in social networks for influence discovery, in: International Conference on Business Information Systems, Springer, 23–37 (2019)

  11. 11.

    Boob, N., Dakhane, D.M.: Mining usage profiles using fuzzy clustering and its applications. Int J Emerging Technol Adv Eng 2(2), 120–123 (2012)

    Google Scholar 

  12. 12.

    Chouchane, A., Bouguessa, M.: Identifying anomalous nodes in multidimensional networks, in: 2017 IEEE International Conference on Data Science and Advanced Analytics (DSAA), IEEE, Tokyo, Japan, 601–610 (2017)

  13. 13.

    Kaur, R., Singh, S.: A survey of data mining and social network analysis based anomaly detection techniques. Egyption Inform. J. 17(2), 199–216 (2016)

    Article  Google Scholar 

  14. 14.

    Grubbs, F.E.: Procedures for detecting outlying observations in samples. Technometrics 11(1), 1–21 (1969)

    Article  Google Scholar 

  15. 15.

    Barnett, V., Lewis, T.: Outliers in Statistical Data. Wiley-Blackwell, NewYork (1994)

    Google Scholar 

  16. 16.

    Aggarwal, C.C., Yu, P.S.: Outlier detection for high dimensional data. ACM SIGMOD Rec. 30(2), 37–46 (2001)

  17. 17.

    Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Computing Surveys 41(3), (2009)

  18. 18.

    Savage, D., Zhang, X., Yu, X., Chou, P., Wang, Q.: Anomaly detection in online social networks. Soc. Netw. 39, 62–70 (2014)

    Article  Google Scholar 

  19. 19.

    Vanetti, M., Binaghi, E., Carminati, B., Carullo, M., Ferrari, E.: Content-based filtering in online social networks, in: C. Dimitrakakis, A. Gkoulalas Divanis, A. Mitrokotsa, V. S. Verykios, Y. Saygin (Eds.), Privacy and Security Issues in Data Mining and Machine Learning (PSDML), Springer, Berlin, Heidelberg (2011)

  20. 20.

    Holland, P.W., Leinhardt, S.: The structural implications of measurement error in sociometry. J. Math. Sociol. 3, 85–111 (1973)

  21. 21.

    Viswanath, B., Bashir, M.A., Crovella, M., Guha, S., Gummadi, K.P., Krishnamurthy, B., Mislove, A.: Towards detecting anomalous user behavior in online social networks, in: In: Proceedings of the 23rd USENIX Security Symposium (USENIX Security), USENIX, San Diego, CA, USA, 223–238 (2014)

  22. 22.

    Xiao, C., Freeman, D.M., Hwa, T.: Detecting clusters of fake accounts in online social networks, in: In: Proceedings of the Eighth ACM Workshop on Artificial Intelligence and Security (AISec), Association for Computing Machinery, Denver Colorado, USA, 91–101 (2015)

  23. 23.

    Shu, L., Xu, H., Liu, B.: Doc: Deep open classification of text documents, in: In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (EMNLP), Association for Computational Linguistics, Copenhagen, Denmark, 2901–2906 (2017)

  24. 24.

    Zhang, Y., Chen, W., Yeo, C.K., Lau, C. T., Lee, B. S.: Detecting rumors on online social networks using multi-layer autoencoder, in: In: Proceedings of the 2017 IEEE Technology Engineering Management Conference (TEMSCON), IEEE, Santa Clara, CA, USA, 437–441 (2017)

  25. 25.

    Yang, B., Cao, R.N.J., Zou, L.: Anomaly detection in moving crowds through spatio temporal autoencoding and additional attention. Adv. Multimedia 2018, 1–8 (2018)

    Google Scholar 

  26. 26.

    Lashkari, A.H., Chen, M., Ghorbani, A.A.: A survey on user profiling model for anomaly detection in cyberspace. J. Cyber Secur. Mob. 8, 75–112 (2019)

    Article  Google Scholar 

  27. 27.

    Zamanian, Z., Feizollah, A., Anuar, N.B., Kiah, L.B.M., Srikanth, K., Kumar, S.: User profiling in anomaly detection of authorization logs. In: Alfred, R., Lim, Y., Ibrahim, A., Anthony, P. (eds.) Comput. Sci. Technol. Springer, Singapore (2019)

    Google Scholar 

  28. 28.

    Glasser, J., Lindauer, B.: Bridging the gap: A pragmatic approach to generating insider threat data, in: In: Proceedings of the IEEE Security and Privacy Workshops (SPW), IEEE, San Francisco, CA, USA, 98–104 (2013)

  29. 29.

    Chen, Z., Liu, B.:Mining topics in documents: standing on the shoulders of big data, in: In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining (SIGKDD), ACM, New York, USA, 1116–1125 (2014)

  30. 30.

    Lu, C., Shi, J., Jia, J.: Abnormal event detection at 150 fps in matlab, in: In: Proceedings of the 14th IEEE International Conference on Computer Vision (ICCV), IEEE, Australia, 2720–2727 (2013)

  31. 31.

    Ravanbakhsh, M., Sangineto, E., Nabi, M., Sebe, N.: Abnormal event detection in videos using generative adversarial nets, in: In: Proceedings of the IEEE International Conference on Image Processing (ICIP), IEEE, Beijing, China, 1577–1581 (2017)

  32. 32.

    Getoor, L., Diehl, C.P.: Link mining: a survey. ACM SIGKDD Explorations Newslett. 7, 3–12 (2005)

    Article  Google Scholar 

  33. 33.

    Fire, M., Katz, G., Elovici, Y.: Strangers intrusion detection—detecting spammers and fake profiles in social networks based on topology anomalies. ASE Hum. J. 1, 26–39 (2012)

    Google Scholar 

  34. 34.

    Akoglu, L., McGlohon, M., Faloutsos, C.: oddball: Spotting anomalies in weighted graphs. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) Advances in Knowledge Discovery and Data Mining. Springer, Berlin, Heidelberg (2010)

    Google Scholar 

  35. 35.

    Hassanzadeh, R., Nayak, R., Stebila, D.: Analyzing the effectiveness of graphmetrics for anomaly detection in online social networks. In: Wang, X.S., Cruz, I., Delis, A., Huang, G. (eds.) Web Information Systems Engineering. Springer, Berlin, Heidelberg (2012)

    Google Scholar 

  36. 36.

    Rezaei, A., Kasirun, Z. M., Rohani, V. A., Khodadadi, T.: Anomaly detection in online social networks using structure based technique, in: In: Proceedings of the 8th International Conference for Internet Technology and Secured Transactions (ICITST), IEEE, London, UK, 619–622 (2013)

  37. 37.

    Castellini, J., Poggioni, V., Sorbi, G.: Fake twitter followers detection by denoising autoencoder, in: In: Proceedings of the International Conference on Web Intelligence (WI), Association for Computing Machinery, Leipzig, Germany, 195–202 (2017)

  38. 38.

    Zheleva, E., Getoor, L., Golbeck, J., Kuter, U.: Using friendship ties and family circles for link prediction. In: Giles, L., Smith, M., Yen, J., Zhang, H. (eds.) Advances in Social Network Mining and Analysis. Springer, Berlin, Heidelberg (2008)

    Google Scholar 

  39. 39.

    Chen, Z., Hendrix, W., Samatova, N.F.: Community-based anomaly detection in evolutionary networks. J. Intell. Inform. Syst. 39, 59–85 (2012)

    Article  Google Scholar 

  40. 40.

    Ben Chaabene, N.E.H., Bouzeghoub, A., Guetari, R., Balti, S., Hajjami Ben Ghezala, H.: Detection of users’ abnormal behavior on social networks, in: L. Barolli, F. Amato, F. Moscato, T. Enokido, M. Takizawa (Eds.), Advanced Information Networking and Applications, Springer, Cham (2020)

  41. 41.

    Li, Z., Sun, D., Zhu, R., Lin, Z.: Detecting event-related changes in organizational networks using optimized neural network models. PLoS One 12, 1–21 (2017)

    Google Scholar 

  42. 42.

    Shetty, J., Adibi, J.: The Enron email dataset database schema and brief statistical report, Information Sciences Institute (2004)

  43. 43.

    Atran, S.: John Jay ARTIS Transnational Terrorism Database, College of Criminal Justice (2009)

  44. 44.

    Bhattacharjee, S.D., Yuan, J., Jiaqi, Z., Tan, Y. : Contextaware graph-based analysis for detecting anomalous activities, in: In: Proceedings of the 2017 IEEE International Conference on Multimedia and Expo (ICME), IEEE, Hong Kong, China, 1021–1026 (2017)

  45. 45.

    Chen, D., Zhang, Q., Chen, G., Fan, C., Gao, Q.: Forum user profiling by incorporating user behavior and social network connections. In: Xiao, J., Mao, Z.H., Suzumura, T., Zhang, L.J. (eds.) Cognitive Computing. Springer, Cham (2018)

    Google Scholar 

  46. 46.

    Song, Y., Demirdjian, D., Davis, R.: Tracking body and hands for gesture recognition: Natops aircraft handling signals database, in: In: Proceedings of the IEEE International Conference on Automatic Face Gesture Recognition and Workshops (FG), IEEE, Santa Barbara, CA, USA, 500–506 (2011)

  47. 47.

    Yang, Y., Guo, Y., Ma, Y.: Characterization of communities in online social network, In Proceedings of 2010 Cross-Strait Conference on Information Science and Technology (CSCIST), Scientific Research Publishing, USA, Qinhuangdao, China, 600–605 (2010)

  48. 48.

    Vosoughi, S., Roy, D., Aral, S.: The spread of true and false news online. Sci. J. 359, 1146–1151 (2018)

    Google Scholar 

  49. 49.

    Hayat, M.K., Daud, A., Alshdadi, A.A., Banjar, A., Abbasi, R.A., Bao, Y., Dawood, H.: Towards deep learning prospects: insights for social media analytics. IEEE Access 7, 36958–36979 (2019)

    Article  Google Scholar 

  50. 50.

    Chalapathy, R., Chawla, S.: Deep learning for anomaly detection: A survey, arXiv:1901.03407. [Online]. Available: arXiv:1901.03407 (2019)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nour El Houda Ben Chaabene.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ben Chaabene, N., Bouzeghoub, A., Guetari, R. et al. Deep learning methods for anomalies detection in social networks using multidimensional networks and multimodal data: a survey. Multimedia Systems (2021). https://doi.org/10.1007/s00530-020-00731-z

Download citation

Keywords

  • Anomaly detection
  • Social network analysis
  • Multidimensional networks
  • Multimodal data
  • Dynamic behavior
  • Community detection