New weighted sharp Trudinger–Moser inequalities defined on the whole euclidean space \( {\mathbb {R}}^N \) and applications

Abstract

In this paper, we provide an extension to the whole euclidean space \( {\mathbb {R}}^N,\ N \ge 2, \) of the Trudinger–Moser inequalities proved by Calanchi and Ruf (Nonlinear Anal 121:403–411, 2015) involving a logarithmic weight. The inequalities are new and highlight very well the importance of the presence of this type of weight. Next, we prove some version of the concentration-compactness principle due to P.L. Lions giving some new improvements of the Trudinger–Moser inequalities established in the first part of this work. In the light of this last result, we treat some elliptic quasilinear problems involving new type of exponential growth condition at infinity.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Abreu, A., Fernandez, L.G., Jr.: On a weighted Trudinger-Moser inequality in \( {\mathbb{R}}^N \). J. Differ. Equ. 269, 3089–3118 (2020)

  2. 2.

    Adachi, S., Tanaka, K.: Trudinger type inequalities in \( {\mathbb{R}}^N \) and their best constants. Proc. Am. Math. Soc. 128, 2051–2057 (2000)

    Article  Google Scholar 

  3. 3.

    Albuquerque, F.S.B., Alves, C.O., Medeiros, E.S.: Nonlinear Schrödinger equation with unbounded or decaying radial potentials involving exponential critical growth in \({\mathbb{R}}^2\). J. Math. Anal. Appl. 409, 1021–1031 (2014)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Albuquerque, F.S.B.: Sharp constant and extremal function for weighted Trudinger-Moser type inequalities in \({\mathbb{R}}^2\). J. Math. Anal. Appl. 421, 963–970 (2015)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Alves, C.O., Cassani, D., Tarsi, C., Yang, M.: Existence and concentration of ground state solutions for a critical nonlocal Schrödinger equation in \( {\mathbb{R}}^2, \). J. Differ. Equ. 261, 1933–1972 (2016)

    Article  Google Scholar 

  6. 6.

    Aouaoui, S.: A new Trudinger-Moser type inequality and an application to some elliptic equation with doubly exponential nonlinearity in the whole space \({\mathbb{R}}^2\). Arch. Math. 114, 199–214 (2020)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Aouaoui, S., Albuquerque, F.S.B.: A weighted Trudinger-Moser type inequality and its applications to quasilinear elliptic problems with critical growth in the whole Euclidean space. Topol. Methods Nonlinear Anal. 54(1), 109–130 (2019)

  8. 8.

    Aouaoui, S., Jlel, R.: A new Singular Trudinger-Moser Type Inequality with Logarithmic Weights and Applications. Adv. Nonlinear Stud. 20(1), 113–139 (2020)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Aouaoui, S., Jlel, R.: On some elliptic equation in the whole euclidean space \( {\mathbb{R}}^2 \) with nonlinearities having new exponential growth condition. Commun. Pure Appl. Anal. 19, 4771–4796 (2020)

  10. 10.

    Brezis, H.: Functional Analysis. Sobolev spaces and Partial differential equations. Springer, New York (2011)

    Google Scholar 

  11. 11.

    Calanchi, M.: Some weighted inequalities of Trudinger-Moser Type. In: Analysis and Topology in Nonlinear Differential Equations, Progress in Nonlinear Differential Equations and Applications. Springer, Birkhauser, vol. 85, pp. 163-174 (2014)

  12. 12.

    Calanchi, M., Massa, E., Ruf, B.: Weighted Trudinger-Moser inequalities and associated Liouville type equations. Proc. Am. Math. Soc. 146, 5243–5256 (2018)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Calanchi, M., Ruf, B.: On Trudinger-Moser type inequalities with logarithmic weights. J. Differ. Equ. 258, 1967–1989 (2015)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Calanchi, M., Ruf, B.: Trudinger-Moser type inequalities with logarithmic weights in dimension \(N\). Nonlinear Anal. 121, 403–411 (2015)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Calanchi, M., Ruf, B., Sani, F.: Elliptic equations in dimension 2 with double exponential nonlinearities. NoDEA Nonlinear Differ. Equ. Appl. 24, 29 (2017). https://doi.org/10.1007/s00030-017-0453-y

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Cao, D.M.: Nontrivial solution of semilinear elliptic equation with critical exponent in \({{\mathbb{R}}}^2\). Commun. Part. Differ. Equ. 17, 407–435 (1992)

  17. 17.

    Cavalheiro, A.C.: Weighted Sobolev Spaces and Degenerate Elliptic Equations. Bol. Soc. Paran. Mat. 26, 117–132 (2008)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    de Figueiredo, D.G., Miyagaki, O.H., Ruf, B.: Elliptic equations in \( {\mathbb{R}}^2 \) with nonlinearities in the critical growth range. Calc. Var. Partial Differ. Equ. 3(2), 139–153 (1995)

  19. 19.

    de Oliveira, J.F., do Ò, J.M.: Trudinger-Moser type inequalities for weighted spaces involving fractional dimensions. Proc. Am. Math. Soc. 142(8), 2813–2828 (2014)

  20. 20.

    do Ó, J.M.: Semilinear Dirichlet problems for the \(n-\)Laplacian \( {R}^n \) with nonlinearities in critical growth range. Differ. Integral Equ. 9, 967–979 (1996)

  21. 21.

    do Ó, J.M., Medeiros, E., Severo, U.B.: On a quasilinear nonhomogeneous elliptic equation with critical growth in \( {R}^n, \). J. Differ. Equ. 246, 1363–1386 (2009)

  22. 22.

    do Ò, J.M., de Souza, M.: On a class of singular Trudinger-Moser inequalities. Math. Nachr. 284, 1754–1776 (2011)

  23. 23.

    Furtado, M.F., Medeiros, E.S., Severo, U.B.: A Trudinger-Moser inequality in a weighted Sobolev space and applications. Math. Nach(2014) https://doi.org/10.1002/mana.201200315

  24. 24.

    Kilpeläinen, T.: Weighted Sobolev spaces and capacity. Ann. Acad. Sci. Fenn. Math. 19, 95–113 (1994)

    MathSciNet  MATH  Google Scholar 

  25. 25.

    Lam, N.: Sharp Trudinger-Moser inequalities with monomial weights. Nonlinear Differ. Equ. Appl. 24, 39 (2017)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Lam, N., Lu, G.: Existence and multiplicity of solutions to equations of \(n-\)Laplacian type with critical exponential growth in \( {\mathbb{R}}^n, \). J. Funct. Anal. 262, 1132–1165 (2012)

  27. 27.

    Li, Y., Ruf, B.: A sharp Trudinger-Moser type inequality for unbounded domains in \( {\mathbb{R}}^n, \) Indiana Univ. Math. J. 57, 451–480 (2008)

  28. 28.

    Lions, P.L.: The concentration-compactness principle in the Calculus of variations. The limit case. I. Rev. Mat. Iberoamericana 1, 145–201 (1985)

  29. 29.

    Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1971)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Nakai, E., Tomita, N., Yabuta, K.: Density of the set of all infinitely differentiable functions with compact support in weighted Sobolev spaces. Sci. Math. Jpn. 10, 39–45 (2004)

    MathSciNet  MATH  Google Scholar 

  31. 31.

    Nguyen, V.H., Takahashi, F.: On a weighted Trudinger-Moser type inequality on the whole space and related maximizing problem. Differ. Integral Equ. 31, 785–806 (2018)

    MathSciNet  MATH  Google Scholar 

  32. 32.

    Nguyen, V.H.: Remarks on the Moser-Trudinger type inequality with logarithmic weights in dimension N. Proc. Am. Math. Soc. 147, 5183–5193 (2019)

    MathSciNet  Article  Google Scholar 

  33. 33.

    Pucci, P., Radulescu, V.: The impact of the mountain pass theory in nonlinear analysis: a mathematical survey. Bollettino dell’Unione Matematica Italiana Serie 9(3), 543–582 (2010)

    MathSciNet  MATH  Google Scholar 

  34. 34.

    Roy, P.: Extremal function for Moser-Trudinger type inequality with logarithmic weight. Nonlinear Anal. 135, 194–204 (2016)

    MathSciNet  Article  Google Scholar 

  35. 35.

    Roy, P.: On attainability of Moser Trudinger inequality with logarithmic weights in higher dimensions. Discrete Contin. Dyn. Syst. 39, 5207–5222 (2019)

    MathSciNet  Article  Google Scholar 

  36. 36.

    Ruf, B., Sani, F.: Ground states for elliptic equations in \( {\mathbb{R}}^2 \) with exponential critical growth. Geometric properties for parabolic and elliptic PDE’S, Volume 2, 251-268. Springer, Milano (2013)

  37. 37.

    Strauss, W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55, 149–162 (1977)

    MathSciNet  Article  Google Scholar 

  38. 38.

    Trudinger, N.S.: On embedding into Orlicz spaces and some applications. J. Math. Mech. 17, 473–484 (1967)

    MathSciNet  MATH  Google Scholar 

  39. 39.

    Zhang, C.: Concentration-Compactness principle for Trudinger-Moser inequalities with logarithmic weights and their applications. Nonlinear Anal. 197 (2020) Article 111845

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sami Aouaoui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Andrea Malchiodi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aouaoui, S., Jlel, R. New weighted sharp Trudinger–Moser inequalities defined on the whole euclidean space \( {\mathbb {R}}^N \) and applications. Calc. Var. 60, 50 (2021). https://doi.org/10.1007/s00526-021-01925-7

Download citation

Mathematics Subject Classification

  • 26D15
  • 35A15
  • 35B33
  • 35D30
  • 35J20
  • 35J62
  • 46E35