Coupling local and nonlocal evolution equations


We prove existence, uniqueness and several qualitative properties for evolution equations that combine local and nonlocal diffusion operators acting in different subdomains and coupled in such a way that the resulting evolution equation is the gradient flow of an energy functional. We deal with the Cauchy, Neumann and Dirichlet problems, in the last two cases with zero boundary data. For the first two problems we prove that the model preserves the total mass. We also study the decay rates of the solutions for large times. Finally, we show that we can recover the usual heat equation (local diffusion) in a limit procedure when we rescale the nonlocal kernel in a suitable way.

This is a preview of subscription content, log in to check access.


  1. 1.

    Andreu, F., Mazón, J.M., Rossi, J.D., Toledo, J.: A nonlocal \(p\)-Laplacian evolution equation with Neumann boundary conditions. J. Math. Pures Appl. (9) 90(2), 201–227 (2008)

    MathSciNet  MATH  Google Scholar 

  2. 2.

    Andreu, F., Mazón, J.M., Rossi, J.D., Toledo, J.: A nonlocal \(p\)-Laplacian evolution equation with nonhomogeneous Dirichlet boundary conditions. SIAM J. Math. Anal. 40(5), 1815–1851 (2008/09)

  3. 3.

    Andreu, F., Mazón, J.M., Rossi, J.D., Toledo, J.: Nonlocal Diffusion Problems. Mathematical Surveys and Monographs, 165. American Mathematical Society, Providence, RI; Real Sociedad Matemática Española, Madrid (2010)

  4. 4.

    Barbu, V.: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff International Publishing, Leiden (1976)

    Google Scholar 

  5. 5.

    Bates, P., Chmaj, A.: An integrodifferential model for phase transitions: stationary solutions in higher dimensions. J. Stat. Phys. 95(5–6), 1119–1139 (1999)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Bates, P., Fife, P., Ren, X., Wang, X.: Traveling waves in a convolution model for phase transitions. Arch. Rational Mech. Anal. 138(2), 105–136 (1997)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Bénilan, Ph: Equations d’évolution dans un espace de Banach quelconque et applications. Univ. Orsay, Thesis (1972)

  8. 8.

    Bénilan, Ph., Crandall, M.G.: Completely accretive operators. In: Semigroup Theory and Evolution Equations (Delft, 1989), pp. 41–75, Lecture Notes in Pure and Applied Mathematics, 135, Dekker, New York (1991)

  9. 9.

    Bénilan, Ph., Crandall, M.G., Pazy, A.: Nonlinear evolution equations in Banach spaces, to appear

  10. 10.

    Brändle, C., Chasseigne, E., Quirós, F.: Phase transitions with midrange interactions: a nonlocal Stefan model. SIAM J. Math. Anal. 44(4), 3071–3100 (2012)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Brezis, H.: Équations et inéquations non linéaires dans les espaces vectoriels en dualité. (French) Ann. Inst. Fourier (Grenoble) 18 fasc. 1, 115–175 (1968)

  12. 12.

    Brézis, H., Pazy, A.: Convergence and approximation of semigroups of nonlinear operators in Banach spaces. J. Funct. Anal. 9, 63–74 (1972)

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Brézis, H., Strauss, W.A.: Semi-linear second-order elliptic equations in \(L^1\). J. Math. Soc. Jpn. 25, 565–590 (1973)

    MATH  Google Scholar 

  14. 14.

    Cañizo, J.A., Molino, A.: Improved energy methods for nonlocal diffusion problems. Discrete Contin. Dyn. Syst. 38(3), 1405–1425 (2018)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Carrillo, C., Fife, P.: Spatial effects in discrete generation population models. J. Math. Biol. 50(2), 161–188 (2005)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Chasseigne, E., Chaves, M., Rossi, J.D.: Asymptotic behavior for nonlocal diffusion equations. J. Math. Pures Appl. (9) 86(3), 271–291 (2006)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Chasseigne, E., Jakobsen, E.R.: On nonlocal quasilinear equations and their local limits. J. Differ. Equ. 262(6), 3759–3804 (2017)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Chen, X.: Existence, uniqueness and asymptotic stability of travelling waves in nonlocal evolution equations. Adv. Differ. Equ. 2(1), 125–160 (1997)

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Cortázar, C., Elgueta, M., Rossi, J.D.: Nonlocal diffusion problems that approximate the heat equation with Dirichlet boundary conditions. Israel J. Math. 170, 53–60 (2009)

    MathSciNet  MATH  Google Scholar 

  20. 20.

    Cortázar, C., Elgueta, M., Rossi, J.D., Wolanski, N.: Boundary fluxes for non-local diffusion. J. Differ. Equ. 234(2), 360–390 (2007)

    MATH  Google Scholar 

  21. 21.

    Cortázar, C., Elgueta, M., Rossi, J.D., Wolanski, N.: How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems. Arch. Ration. Mech. Anal. 187(1), 137–156 (2008)

    MathSciNet  MATH  Google Scholar 

  22. 22.

    Crandall, M.G., Liggett, T.M.: Generation of semi-groups of nonlinear transformations on general Banach spaces. Am. J. Math. 93, 265–298 (1971)

    MathSciNet  MATH  Google Scholar 

  23. 23.

    D’Elia, M., Du, Q., Gunzburger, M., Lehoucq, R.: Nonlocal convection-diffusion problems on bounded domains and finite-range jump processes. Comput. Methods Appl. Math. 17(4), 707–722 (2017)

    MathSciNet  MATH  Google Scholar 

  24. 24.

    D’Elia, M., Perego, M., Bochev, P., Littlewood, D.: A coupling strategy for nonlocal and local diffusion models with mixed volume constraints and boundary conditions. Comput. Math. Appl. 71(11), 2218–2230 (2016)

    MathSciNet  Google Scholar 

  25. 25.

    D’Elia, M., Ridzal, D., Peterson, K.J., Bochev, P., Shashkov, M.: Optimization-based mesh correction with volume and convexity constraints. J. Comput. Phys. 313, 455–477 (2016)

    MathSciNet  MATH  Google Scholar 

  26. 26.

    Du, Q., Li, X.H., Lu, J., Tian, X.: A quasi-nonlocal coupling method for nonlocal and local diffusion models. SIAM J. Numer. Anal. 56(3), 1386–1404 (2018)

    MathSciNet  MATH  Google Scholar 

  27. 27.

    Evans, L.C.: Partial differential equations. Second edition. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI (2010)

  28. 28.

    Fife, P.: Some nonclassical trends in parabolic and parabolic-like evolutions. In: Trends in Nonlinear Analysis, 153–191. Springer, Berlin (2003)

  29. 29.

    Fife, P., Wang, X.: A convolution model for interfacial motion: the generation and propagation of internal layers in higher space dimensions. Adv. Differ Equ. 3(1), 85–110 (1998)

    MathSciNet  MATH  Google Scholar 

  30. 30.

    Fuensanta, A., Muñoz, J.: On the convergence of a class of nonlocal elliptic equations and related optimal design problems. J. Optim. Theory Appl. 172(1), 33–55 (2017)

    MathSciNet  MATH  Google Scholar 

  31. 31.

    Gal, C.G., Warma, M.: Nonlocal transmission problems with fractional diffusion and boundary conditions on non-smooth interfaces. Commun. Partial Differ. Equ. 42(4), 579–625 (2017)

    MathSciNet  MATH  Google Scholar 

  32. 32.

    Kriventsov, D.: Regularity for a local-nonlocal transmission problem. Arch. Ration. Mech. Anal. 217, 1103–1195 (2015)

    MathSciNet  MATH  Google Scholar 

  33. 33.

    Mosco, U.: Convergence of convex sets and of solutions of variational inequalities. Adv. Math. 3, 510–585 (1969)

    MathSciNet  MATH  Google Scholar 

  34. 34.

    Pazy, A.: Semigroups of linear operators and applications to partial differential equations. Applied Mathematical Sciences, 44. Springer, New York (1983)

  35. 35.

    Silvestre, L.: Hölder estimates for solutions of integro-differential equations like the fractional Laplace. Indiana Univ. Math. J. 55(3), 1155–1174 (2006)

    MathSciNet  MATH  Google Scholar 

  36. 36.

    Wang, X.: Metastability and stability of patterns in a convolution model for phase transitions. J. Differ. Equ. 183(2), 434–461 (2002)

    MathSciNet  MATH  Google Scholar 

  37. 37.

    Zhang, L.: Existence, uniqueness and exponential stability of traveling wave solutions of some integral differential equations arising from neuronal networks. J. Differ. Equ. 197(1), 162–196 (2004)

    MathSciNet  MATH  Google Scholar 

Download references


The first two authors were partially supported by the Spanish project MTM2017-87596-P, and the third one by CONICET grant PIP GI No 11220150100036CO (Argentina), by UBACyT grant 20020160100155BA (Argentina) and by the Spanish project MTM2015-70227-P. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant Agreement No. 777822. Part of this work was done during visits of JDR to Madrid and of AG and FQ to Buenos Aires. The authors want to thank these institutions for the nice and stimulating working atmosphere.

Author information



Corresponding author

Correspondence to Fernando Quirós.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by M. Del Pino.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gárriz, A., Quirós, F. & Rossi, J.D. Coupling local and nonlocal evolution equations. Calc. Var. 59, 112 (2020).

Download citation

Mathematics Subject Classification

  • 35K55
  • 35B40
  • 35A05