A discrete variational scheme for isentropic processes in polyconvex thermoelasticity

Abstract

We propose a variational scheme for the construction of isentropic processes of the equations of adiabatic thermoelasticity with polyconvex internal energy. The scheme hinges on the embedding of the equations of adiabatic polyconvex thermoelasticity into a symmetrizable hyperbolic system. We establish existence of minimizers for an associated minimization theorem and construct measure-valued solutions that dissipate the total energy. We prove that the scheme converges when the limiting solution is smooth.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Alibert, J.J., Bouchitté, G.: Non-uniform integrability and generalized Young measures. J. Convex Anal. 129–147, 4 (1997)

    MathSciNet  MATH  Google Scholar 

  2. 2.

    Ball, J.M.: A version of the fundamental theorem for Young measures. In: Rascle M., Serre D., Slemrod M. (eds.) PDEs and Continuum Models of Phase Transitions. Lecture Notes in Physics, vol. 344. Springer, Berlin, Heidelberg (1989)

  3. 3.

    Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63(4), 337–403 (1976/1977)

  4. 4.

    Ball, J.M., Currie, J.C., Olver, P.J.: Null Lagrangians, weak continuity and variational problems of arbitrary order. J. Funct. Anal. 41, 135–174 (1981)

    MathSciNet  MATH  Article  Google Scholar 

  5. 5.

    Brenier, Y.: Hydrodynamic structure of the augmented Born–Infeld equations. Arch. Ration. Mech. Anal. 172(1), 65–91 (2004)

    MathSciNet  MATH  Article  Google Scholar 

  6. 6.

    Cavalletti, F., Sedjro, M., Westdickenberg, M.: A variational time discretization for compressible Euler equations. Trans. Am. Math. Soc. 371, 5083–5155 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  7. 7.

    Callen, H.B.: Thermodynamics and an Introduction to Thermostatistics. Wiley, New York (1985)

    Google Scholar 

  8. 8.

    Christoforou, C., Galanopoulou, M., Tzavaras, A.: A symmetrizable extension of polyconvex thermoelasticity and applications to zero-viscosity limits and weak–strong uniqueness. Commun. Partial Differ. Equ. 43, 1019–1050 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  9. 9.

    Christoforou, C., Galanopoulou, M., Tzavaras, A.: Measure-valued solutions for the equations of polyconvex adiabatic thermoelasticity. Discrete Contin. Dyn. Syst. 39, 6175–6206 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  10. 10.

    Christoforou, C., Tzavaras, A.: Relative entropy for hyperbolic-parabolic systems and application to the constitutive theory of thermoviscoelasticity. Arch. Ration. Mech. Anal. 229(1), 1–52 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    Coleman, B.D., Noll, W.: On the thermostatics of continuous media. Arch. Ration. Mech. Anal. 4, 97–128 (1959)

    MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1963)

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 325, 2nd edn. Springer, Berlin (2005)

  14. 14.

    Demoulini, S., Stuart, D.M.A., Tzavaras, A.E.: A variational approximation scheme for three-dimensional elastodynamics with polyconvex energy. Arch. Ration. Mech. Anal. 157(4), 325–344 (2001)

    MathSciNet  MATH  Article  Google Scholar 

  15. 15.

    Demoulini, S., Stuart, D.M.A., Tzavaras, A.E.: Weak-strong uniqueness of dissipative measure-valued solutions for polyconvex elastodynamics. Arch. Ration. Mech. Anal. 205(3), 927–961 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    DiPerna, R.J., Majda, A.J.: Oscillations and concentrations in weak solutions of the incompressible Euler equations. Commun. Math. Phys. 108, 667–689 (1987)

    MATH  Article  Google Scholar 

  17. 17.

    Duan, X.: Hyperbolicity of the time-like extremal surfaces in Minkowski spaces (2017). arXiv preprint arXiv: 1706.04768

  18. 18.

    Evans, L.C.: Entropy and Partial Differential Equations, Lecture Notes. UC Berkely. https://math.berkeley.edu/~evans/entropy.and.PDE.pdf

  19. 19.

    Fosdick, R.L., Serrin, J.: Global properties of continuum thermodynamic processes. Arch. Ration. Mech. Anal. 59, 97–109 (1975)

    MathSciNet  MATH  Article  Google Scholar 

  20. 20.

    Friedrichs, K.O., Lax, P.D.: Systems of conservation equations with a convex extension. Proc. Natl. Acad. Sci. USA 68, 1686–1688 (1971)

    MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    Gwiazda, P., Swierczewska-Gwiazda, A., Wiedemann, E.: Weak-strong uniqueness for measure-valued solutions of some compressible fluid models. Nonlinearity 28, 3873–3890 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  22. 22.

    Lattanzio, C., Tzavaras, A.E.: Structural properties of stress relaxation and convergence from viscoelasticity to polyconvex elastodynamics. Arch. Ration. Mech. Anal. 180, 449–492 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  23. 23.

    Miroshnikov, A., Tzavaras, A.E.: A convergence of variational approximation schemes for elastodynamics with polyconvex energy. Z. Anal. Anwend. 33, 43–64 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  24. 24.

    Pedregal, P.: Variational Methods in Nonlinear Elasticity. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2000)

    Google Scholar 

  25. 25.

    Qin, T.: Symmetrizing nonlinear elastodynamic system. J. Elast. 50(3), 245–252 (1998)

    MathSciNet  MATH  Article  Google Scholar 

  26. 26.

    Serrin, J.: An outline of thermodynamical structure. In: Serrin, J. (ed.) New Perspectives in Thermodynamics, pp. 3–32. Springer, Berlin (1986)

    Google Scholar 

  27. 27.

    Serrin, J.: The equations of continuum mechanics and the laws of thermodynamics. Meccanica 31, 547–563 (1996)

    MathSciNet  MATH  Article  Google Scholar 

  28. 28.

    Šilhavý, M.: On measures, convex cones, and foundations of thermodynamics. Czechoslov. J. Phys. B 30, 961–991 (1980)

    Article  Google Scholar 

  29. 29.

    Šilhavý, M.: Foundations of continuum thermodynamics. In: Serrin, J. (ed.) New Perspectives in Thermodynamics, pp. 33–48. Springer, Berlin (1986)

    Google Scholar 

  30. 30.

    Truesdell, C., Noll, W.: The Non-linear Field Theories of Mechanics, 2nd edn. Springer, Berlin (1992)

    Google Scholar 

  31. 31.

    Tzavaras, A.E.: Stress relaxation models with polyconvex entropy in Lagrangean and Eulerian coordinates. Commun. Inf. Syst. 13(4), 487–515 (2013)

    MathSciNet  MATH  Google Scholar 

  32. 32.

    Wagner, D.H.: Symmetric-hyperbolic equations of motion for a hyperelastic material. J. Hyperbolic Differ. Equ. 6, 615–630 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  33. 33.

    Westdickenberg, M.: Euler–Lagrange equation for a minimization problem over monotone transport maps. Q. Appl. Math. 75, 267–285 (2017)

    MathSciNet  MATH  Article  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referee for very helpful comments that helped considerably in improving this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Myrto Galanopoulou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by J.Ball.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Christoforou, C., Galanopoulou, M. & Tzavaras, A.E. A discrete variational scheme for isentropic processes in polyconvex thermoelasticity. Calc. Var. 59, 122 (2020). https://doi.org/10.1007/s00526-020-01766-w

Download citation

Mathematics Subject Classification

  • 35Q74
  • 49M25
  • 35L65
  • 174B20
  • 74A15