Skip to main content
Log in

The semi-classical limit of large fermionic systems

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study a system of N fermions in the regime where the intensity of the interaction scales as 1 / N and with an effective semi-classical parameter \(\hbar =N^{-1/d}\) where d is the space dimension. For a large class of interaction potentials and of external electromagnetic fields, we prove the convergence to the Thomas–Fermi minimizers in the limit \(N\rightarrow \infty \). The limit is expressed using many-particle coherent states and Wigner functions. The method of proof is based on a fermionic de Finetti–Hewitt–Savage theorem in phase space and on a careful analysis of the possible lack of compactness at infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ammari, Z., Nier, F.: Mean field limit for bosons and infinite dimensional phase-space analysis. Ann. Henri Poincaré 9, 1503–1574 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Auchmuty, J.F.G., Beals, R.: Models of rotating stars. Astrophys. J. 165, L79+ (1971)

    Article  Google Scholar 

  3. Auchmuty, J.F.G., Beals, R.: Variational solutions of some nonlinear free boundary problems. Arch. Ration. Mech. Anal. 43, 255–271 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bach, V.: Ionization energies of bosonic Coulomb systems. Lett. Math. Phys. 21, 139–149 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bach, V., Breteaux, S., Petrat, S., Pickl, P., Tzaneteas, T.: Kinetic energy estimates for the accuracy of the time-dependent Hartree-Fock approximation with coulomb interaction. J. Math. Pures Appl. 105, 1–30 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bach, V., Lewis, R., Lieb, E.H., Siedentop, H.: On the number of bound states of a bosonic \(N\)-particle Coulomb system. Math. Z. 214, 441–459 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bardos, C., Golse, F., Gottlieb, A.D., Mauser, N.J.: Mean field dynamics of fermions and the time-dependent Hartree–Fock equation. J. Math. Pures Appl. (9) 82, 665–683 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bardos, C., Golse, F., Mauser, N.J.: Weak coupling limit of the \(N\)-particle Schrödinger equation. Methods Appl. Anal. 7, 275–293 (2000). Cathleen Morawetz: a great mathematician

    MathSciNet  MATH  Google Scholar 

  9. Benedikter, N., Jaksic, V., Porta, M., Saffirio, C., Schlein, B.: Mean-field evolution of Fermionic mixed states. Commun. Pure Appl. Math. 69, 2250–2303 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Benedikter, N., Porta, M., Saffirio, C., Schlein, B.: From the Hartree dynamics to the Vlasov equation. Arch. Ration. Mech. Anal. 221(1), 273–334 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Benedikter, N., Porta, M., Schlein, B.: Mean-field evolution of fermionic systems. Commun. Math. Phys. 331, 1087–1131 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Benguria, R., Lieb, E.H.: Proof of the stability of highly negative ions in the absence of the Pauli principle. Phys. Rev. Lett. 50, 1771–1774 (1983)

    Article  Google Scholar 

  13. Caglioti, E., Lions, P.-L., Marchioro, C., Pulvirenti, M.: A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. Commun. Math. Phys. 143, 501–525 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Combescure, M., Robert, D.: Coherent States and Applications in Mathematical Physics, Theoretical and Mathematical Physics. Springer, Dordrecht (2012)

    MATH  Google Scholar 

  15. de Finetti, B.: Funzione caratteristica di un fenomeno aleatorio. Atti della R. Accademia Nazionale dei Lincei. Ser. 6, Memorie, Classe di Scienze Fisiche, Matematiche e Naturali (1931)

  16. de Finetti, B.: La prévision: ses lois logiques, ses sources subjectives. Ann. Inst. H. Poincaré 7, 1–68 (1937)

    MathSciNet  MATH  Google Scholar 

  17. Dereziński, J., Gérard, C.: Mathematics of Quantization and Quantum Fields, Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  18. Diaconis, P., Freedman, D.: Finite exchangeable sequences. Ann. Prob. 8, 745–764 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dynkin, E .B.: Classes of equivalent random quantities. Uspehi Matem. Nauk (N.S.) 8, 125–130 (1953)

    MathSciNet  Google Scholar 

  20. Dyson, F.J., Lenard, A.: Stability of matter. I. J. Math. Phys. 8, 423–434 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  21. Elgart, A., Erdős, L., Schlein, B., Yau, H.-T.: Nonlinear Hartree equation as the mean field limit of weakly coupled fermions. J. Math. Pures Appl. 83, 1241–1273 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Elgart, A., Erdős, L., Schlein, B., Yau, H.-T.: Gross-Pitaevskii equation as the mean field limit of weakly coupled bosons. Arch. Ration. Mech. Anal. 179, 265–283 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Elgart, A., Schlein, B.: Mean field dynamics of boson stars. Commun. Pure Appl. Math. 60, 500–545 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Elliott, P., Lee, D., Cangi, A., Burke, K.: Semiclassical origins of density functionals. Phys. Rev. Lett. 100, 256406 (2008)

    Article  Google Scholar 

  25. Erdös, L., Schlein, B., Yau, H.-T.: Rigorous derivation of the Gross–Pitaevskii equation with a large interaction potential. J. Am. Math. Soc. 22, 1099–1156 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fannes, M., Spohn, H., Verbeure, A.: Equilibrium states for mean field models. J. Math. Phys. 21, 355–358 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  27. Friedman, A.: Variational Principles and Free-Boundary Problems, Pure and Applied Mathematics. Wiley, New York (1982). A Wiley-Interscience Publication

    Google Scholar 

  28. Fröhlich, J., Knowles, A.: A microscopic derivation of the time-dependent Hartree–Fock equation with Coulomb two-body interaction. J. Stat. Phys. 145, 23–50 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Fröhlich, J., Knowles, A., Schwarz, S.: On the mean-field limit of bosons with Coulomb two-body interaction. Commun. Math. Phys. 288, 1023–1059 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Fröhlich, J., Graffi, S., Schwarz, S.: Mean-field and classical limit of many-body Schrödinger dynamics for bosons. Commun. Math. Phys. 271, 681–697 (2007)

    Article  MATH  Google Scholar 

  31. Ginibre, J., Velo, G.: The classical field limit of scattering theory for nonrelativistic many-boson systems. I. Commun. Math. Phys. 66, 37–76 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  32. Golse, F.: On the dynamics of large particle systems in the mean field limit, ArXiv e-prints arXiv:1301.5494. Lecture notes for a course at the NDNS+ Applied Dynamical Systems Summer School “Macroscopic and large scale phenomena”. Universiteit Twente, Enschede (The Netherlands) (2013)

  33. Graffi, S., Martinez, A., Pulvirenti, M.: Mean-field approximation of quantum systems and classical limit. Math. Methods Appl. Sci. 13, 59–73 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Grech, P., Seiringer, R.: The excitation spectrum for weakly interacting bosons in a trap. Commun. Math. Phys. 322, 559–591 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hepp, K.: The classical limit for quantum mechanical correlation functions. Commun. Math. Phys. 35, 265–277 (1974)

    Article  MathSciNet  Google Scholar 

  36. Hewitt, E., Savage, L.J.: Symmetric measures on Cartesian products. Trans. Am. Math. Soc. 80, 470–501 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  37. Husimi, K.: Some formal properties of the density matrix. Proc. Phys. Math. Soc. Jpn. 22, 264 (1940)

    MATH  Google Scholar 

  38. Hwang, I.: The \(L^2\)-boundedness of pseudo differential operators. Trans. Am. Math. Soc 302, 55–76 (1987)

    Google Scholar 

  39. Kiessling, M.K.-H.: The Hartree limit of Born’s ensemble for the ground state of a bosonic atom or ion. J. Math. Phys. 53, 095223 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Knowles, A., Pickl, P.: Mean-field dynamics: singular potentials and rate of convergence. Commun. Math. Phys. 298, 101–138 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lévy-Leblond, J.-M.: Nonsaturation of gravitational forces. J. Math. Phys. 10, 806–812 (1969)

    Article  MATH  Google Scholar 

  42. Lewin, M.: Geometric methods for nonlinear many-body quantum systems. J. Funct. Anal. 260, 3535–3595 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Lewin, M.: Mean-field limit of Bose systems: rigorous results. In: Proceedings of the International Congress of Mathematical Physics (2015). ArXiv e-prints

  44. Lewin, M., Nam, P.T., Rougerie, N.: Derivation of Hartree’s theory for generic mean-field Bose systems. Adv. Math. 254, 570–621 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lewin, M., Nam, P.T., Rougerie, N.: Remarks on the quantum de Finetti theorem for bosonic systems. Appl. Math. Res. Express (AMRX) 2015, 48–63 (2015)

    MathSciNet  MATH  Google Scholar 

  46. Lewin, M., Nam, P.T., Rougerie, N.: The mean-field approximation and the non-linear Schrödinger functional for trapped Bose gases. Trans. Am. Math. Soc 368, 6131–6157 (2016)

    Article  MATH  Google Scholar 

  47. Lewin, M., Nam, P.T., Schlein, B.: Fluctuations around Hartree states in the mean-field regime. Am. J. Math. 137, 1613–1650 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  48. Lewin, M., Thành Nam, P., Rougerie, N.: A note on 2D focusing many-boson systems. Proc. Am. Math. Soc. 145, 2441–2454 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  49. Lieb, E.H.: Thomas–Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53, 603–641 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  50. Lieb, E .H., Liniger, W.: Exact analysis of an interacting Bose gas. I. The general solution and the ground state. Phys. Rev. (2) 130, 1605–1616 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  51. Lieb, E.H., Seiringer, R.: Derivation of the Gross–Pitaevskii equation for rotating Bose gases. Commun. Math. Phys. 264, 505–537 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  52. Lieb, E.H., Seiringer, R.: The Stability of Matter in Quantum Mechanics. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  53. Lieb, E.H., Seiringer, R., Solovej, J.P., Yngvason, J.: The Mathematics of the Bose Gas and its Condensation. Oberwolfach Seminars, Birkhäuser (2005)

    MATH  Google Scholar 

  54. Lieb, E.H., Simon, B.: Thomas–Fermi theory revisited. Phys. Rev. Lett. 31, 681–683 (1973)

    Article  Google Scholar 

  55. Lieb, E.H., Simon, B.: The Hartree–Fock theory for Coulomb systems. Commun. Math. Phys. 53, 185–194 (1977)

    Article  MathSciNet  Google Scholar 

  56. Lieb, E.H., Simon, B.: The Thomas–Fermi theory of atoms, molecules and solids. Adv. Math. 23, 22–116 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  57. Lieb, E.H., Thirring, W.E.: Bound on kinetic energy of fermions which proves stability of matter. Phys. Rev. Lett. 35, 687–689 (1975)

    Article  Google Scholar 

  58. Lieb, E.H., Thirring, W.E.: Inequalities for the Moments of the Eigenvalues of the Schrödinger Hamiltonian and their Relation to Sobolev Inequalities, Studies in Mathematical Physics, pp. 269–303. Princeton University Press, Princeton (1976)

    Google Scholar 

  59. Lieb, E.H., Thirring, W.E.: Gravitational collapse in quantum mechanics with relativistic kinetic energy. Ann. Phys. 155, 494–512 (1984)

    Article  MathSciNet  Google Scholar 

  60. Lieb, E.H., Yau, H.-T.: The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Commun. Math. Phys. 112, 147–174 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  61. Lions, P.-L.: Minimization problems in \(L^{1}({ R}^{3})\). J. Funct. Anal. 41, 236–275 (1981)

    Article  MathSciNet  Google Scholar 

  62. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case, Part I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 109–149 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  63. Lions, P.-L.: Solutions of Hartree–Fock equations for Coulomb systems. Commun. Math. Phys. 109, 33–97 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  64. Lions, P.-L., Paul, T.: Sur les mesures de Wigner. Rev. Mat. Iberoamericana 9, 553–618 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  65. Messer, J., Spohn, H.: Statistical mechanics of the isothermal Lane–Emden equation. J. Stat. Phys. 29, 561–578 (1982)

    Article  MathSciNet  Google Scholar 

  66. Narnhofer, H., Sewell, G.: Vlasov hydrodynamics of a quantum mechanical model. Commun. Math. Phys. 79, 9–24 (1981)

    Article  MathSciNet  Google Scholar 

  67. Petrat, S., Pickl, P.: A new method and a new scaling for deriving Fermionic mean-field dynamics, ArXiv e-prints (2014)

  68. Pickl, P.: A simple derivation of mean-field limits for quantum systems. Lett. Math. Phys. 97, 151–164 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  69. Raggio, G.A., Werner, R.F.: Quantum statistical mechanics of general mean field systems. Helv. Phys. Acta 62, 980–1003 (1989)

    MathSciNet  MATH  Google Scholar 

  70. Rodnianski, I., Schlein, B.: Quantum fluctuations and rate of convergence towards mean field dynamics. Commun. Math. Phys. 291, 31–61 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  71. Rougerie, N.: De Finetti theorems, mean-field limits and Bose–Einstein condensation, ArXiv e-prints (2015)

  72. Seiringer, R.: The excitation spectrum for weakly interacting bosons. Commun. Math. Phys. 306, 565–578 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  73. Seiringer, R., Yngvason, J., Zagrebnov, V.A.: Disordered Bose–Einstein condensates with interaction in one dimension. J. Stat. Mech. 2012, P11007 (2012)

    Article  Google Scholar 

  74. Solovej, J.P.: Asymptotics for bosonic atoms. Lett. Math. Phys. 20, 165–172 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  75. Solovej, J .P.: The ionization conjecture in Hartree–Fock theory. Ann. Math. (2) 158, 509–576 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  76. Spohn, H.: Kinetic equations from Hamiltonian dynamics: Markovian limits. Rev. Modern Phys. 52, 569–615 (1980)

    Article  MathSciNet  Google Scholar 

  77. Spohn, H.: On the Vlasov hierarchy. Math. Methods Appl. Sci. 3, 445–455 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  78. Takahashi, K.: Wigner and Husimi functions in quantum mechanics. J. Phys. Soc. Jpn. 55, 762–779 (1986)

    Article  MathSciNet  Google Scholar 

  79. van den Berg, M., Lewis, J.T., Pulè, J.V.: The large deviation principle and some models of an interacting boson gas. Commun. Math. Phys. 118, 61–85 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  80. Werner, R.F.: Large deviations and mean-field quantum systems. In: Accardi, L. (ed.) Quantum Probability and Telated Topics, QP–PQ, vol. VII, pp. 349–381. World Scientific Publication, River Edge, NJ (1992)

    Chapter  Google Scholar 

Download references

Acknowledgements

M.L. and J.P.S acknowledge financial support from the European Research Council (Grant Agreements MNIQS 258023 and MASTRUMAT 321029). S.F. acknowledges support from a Danish research council Sapere Aude grant. This work was started when the authors were at the Centre Émile Borel of the Institut Henri Poincaré in Paris in 2013. Part of this work was done when S.F. was a visiting professor at the University Paris-Dauphine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Søren Fournais.

Additional information

Communicated by F. Helein.

Appendix: Proof of Lemma 3.2

Appendix: Proof of Lemma 3.2

We first get a uniform estimate on \(\rho _{\gamma _N}\). Indeed, using that

$$\begin{aligned} \gamma _N={\mathbb {1}}\left( \left( -i N^{-1/d}\nabla + A\right) ^2_{C_R}-c_{\mathrm{TF}}\rho \leqslant 0\right) \leqslant e^{-\beta ((-i N^{-1/d}\nabla + A)^2_{C_R}-c_{\mathrm{TF}}\rho )}, \end{aligned}$$

for any \(\beta >0\), we deduce that

$$\begin{aligned} \rho _{\gamma _N}(x)\leqslant |e^{-\beta ((-i N^{-1/d}\nabla + A)^2_{C_R}-c_{\mathrm{TF}}\rho )}(x,x)|. \end{aligned}$$

From the Feynman–Kac formula and the diamagnetic inequality, we have

$$\begin{aligned} |e^{-\beta ((-i N^{-1/d}\nabla + A)^2_{C_R}-c_{\mathrm{TF}}\rho )}(x,y)|\leqslant e^{c_{\mathrm{TF}}\beta \left| \! \left| \rho \right| \! \right| _{L^\infty }}e^{N^{-2/d}\beta \Delta _{C_R}}(x,y), \end{aligned}$$

where \(\Delta _{C_R}\) is the (non-magnetic) Dirichlet Laplacian on \(C_R\), and hence

$$\begin{aligned} \rho _{\gamma _N}(x)&\leqslant \left( \frac{2}{R}\right) ^{d}e^{c_{\mathrm{TF}}\beta \left| \! \left| \rho \right| \! \right| _{L^\infty }}\sum _{k_1,\ldots ,k_d\in (\pi /R){\mathbb {N}}\setminus \{0\}} e^{-N^{-2/d}\beta \sum _{j=1}^d|k_j|^2}\times \\&\quad \times \prod _{j=1}^d\sin ^2\left( k_j (x_j-R/2)\right) \\&\leqslant \left( \frac{2}{R}\right) ^{d}e^{c_{\mathrm{TF}}\beta \left| \! \left| \rho \right| \! \right| _{L^\infty }}\left( \sum _{k\in \frac{\pi }{RN^{1/d}}{\mathbb {N}}\setminus \{0\}} e^{-\beta |k|^2}\right) ^d\\&\leqslant e^{c_{\mathrm{TF}}\beta \left| \! \left| \rho \right| \! \right| _{L^\infty }}N\pi ^{-d}\beta ^{-d/2}\left( \int _{\mathbb {R}}e^{-|k|^2}\,dk\right) ^d. \end{aligned}$$

Optimizing over \(\beta \) gives

$$\begin{aligned} \rho _{\gamma _N}(x)\leqslant \left( \frac{2ec\pi }{\pi d}\right) ^{d/2}N \left| \! \left| \rho \right| \! \right| _{L^\infty ({\mathbb {R}}^d)}^{d/2}. \end{aligned}$$
(A.1)

We have therefore shown that \(\rho _{\gamma _N}/N\) is bounded in \(L^\infty (C_R)\). Up to extraction of a subsequence, we may assume that \(\rho _{\gamma _N}/N\rightharpoonup \widetilde{\rho }\) weakly. Now we use that

$$\begin{aligned} 0&\geqslant -\frac{1}{N}\mathrm{Tr}\,\big ((-i N^{-1/d}\nabla + A)^2_{C_R}-c_{\mathrm{TF}}\rho \big )_-\\&=\frac{1}{N}\mathrm{Tr}\,\left( (-i N^{-1/d}\nabla + A)^2-c_{\mathrm{TF}}\rho \right) \gamma _N\\&=\frac{1}{N}\mathrm{Tr}\,\left( -i N^{-1/d}\nabla + A\right) ^2_{C_R}\gamma _N-c_{\mathrm{TF}}\frac{1}{N}\int _{C_R}\rho \rho _{\gamma _N} \end{aligned}$$

from which we deduce that

$$\begin{aligned} \frac{1}{N}\mathrm{Tr}\,\left( -i N^{-1/d}\nabla + A\right) ^2_{C_R}\gamma _N\leqslant c_{\mathrm{TF}}\frac{1}{N}\int _{C_R}\rho \rho _{\gamma _N}\leqslant C \left| \! \left| \rho \right| \! \right| _{L^1} \left| \! \left| \rho \right| \! \right| _{L^\infty }^{d/2}, \end{aligned}$$

due to the uniform upper bound on \(\rho _{\gamma _N}/N\). We then introduce the semi-classical measure \(m_N(x,p)={\left\langle f^\hbar _{x,p},\gamma _Nf^\hbar _{x,p} \right\rangle }\) and call its weak limit m. Arguing as before, we obtain

$$\begin{aligned}&\liminf _{N\rightarrow \infty }\left( \frac{1}{N}\mathrm{Tr}\,(-i N^{-1/d}\nabla + A)^2_{C_R}\gamma _N-c_{\mathrm{TF}}\frac{1}{N}\int _{C_R}\rho \rho _{\gamma _N}\right) \\&\quad \geqslant \frac{1}{(2\pi )^d}\int _{{\mathbb {R}}^d}\int _{{\mathbb {R}}^d}\big (|p+A(x)|^2-c_{\mathrm{TF}}\rho (x)\big )m(x,p)\,dp\,dx. \end{aligned}$$

We now use the well-known Weyl asymptotics for the energy, i.e.

$$\begin{aligned}&\lim _{N\rightarrow \infty } -\frac{1}{N}\mathrm{Tr}\,\big ((-i N^{-1/d}\nabla + A)^2_{C_R}-c_{\mathrm{TF}}\rho (x)\big )_- \nonumber \\&\quad =-\frac{1}{(2\pi )^d}\int _{{\mathbb {R}}^d}\int _{{\mathbb {R}}^d}\big (|p+A(x)|^2-c_{\mathrm{TF}}\rho (x)\big )_-\,dx\,dp. \end{aligned}$$
(A.2)

The result (A.2) is standard for smooth vector potentials A. Let \(A_{\varepsilon }\) be a smooth approximation of A in \(L^2\). Using the inequality

$$\begin{aligned}&(1-\delta ) (-i N^{-1/d}\nabla + A_{\varepsilon })^2 - \delta ^{-2} |A - A_{\varepsilon }|^2\\&\quad \leqslant (-i N^{-1/d}\nabla + A)^2 \nonumber \\&\quad \leqslant (1+\delta ) (-i N^{-1/d}\nabla + A_{\varepsilon })^2 + \delta ^{-2} |A - A_{\varepsilon }|^2, \end{aligned}$$

and the uniform upper bound on \(\rho _{\gamma _N}/N\), the result follows for general A.

So we consider the Weyl asymptotics,

$$\begin{aligned}&\lim _{N\rightarrow \infty } -\frac{1}{N}\mathrm{Tr}\,\big ((-i N^{-1/d}\nabla + A)^2_{C_R}-c_{\mathrm{TF}}\rho (x)\big )_-\\&\quad =-\frac{1}{(2\pi )^d}\int _{{\mathbb {R}}^d}\int _{{\mathbb {R}}^d}\big (|p+A(x)|^2-c_{\mathrm{TF}}\rho (x)\big )_-\,dx\,dp\\&\quad =\inf _{0\leqslant m'\leqslant 1} \frac{1}{(2\pi )^d}\int _{{\mathbb {R}}^d}\int _{{\mathbb {R}}^d}\big (|p+A(x)|^2-c_{\mathrm{TF}}\rho (x)\big )m'(x,p)\,dx\,dp. \end{aligned}$$

with unique minimizer \(m'(x,p) = {\mathbb {1}}(|p+A(x)|^2-c_{\mathrm{TF}}\rho (x)\leqslant 0)\) in \(L^\infty ({\mathbb {R}}^d\times {\mathbb {R}}^d)\), we conclude that \(m={\mathbb {1}}(|p+A(x)|^2-c_{\mathrm{TF}}\rho (x)\leqslant 0)\) a.e. This gives in particular that

$$\begin{aligned} N^{-1}\rho _{\gamma _N}(x)\rightharpoonup \rho _m(x)=\frac{1}{(2\pi )^d}\int _{{\mathbb {R}}^d}{\mathbb {1}}(|p+A(x)|^2-c_{\mathrm{TF}}\rho (x)\big )\,dp=\rho (x) \end{aligned}$$

weakly in \(L^1\cap L^\infty \), hence that

$$\begin{aligned} N^{-1}\mathrm{Tr}\,(\gamma _N)=N^{-1}\int _{C_R}\rho _{\gamma _N}\rightarrow \int _{C_R}\rho =1. \end{aligned}$$
(A.3)

The latter says that \((-i N^{-1/d}\nabla + A)^2_{C_R}-c_{\mathrm{TF}}\rho \) has \(N+o(N)\) negative eigenvalues. From the above limits we also have as desired

$$\begin{aligned} \lim _{N\rightarrow \infty } \frac{1}{N}\mathrm{Tr}\,(-i N^{-1/d}\nabla + A)^2_{C_R}\gamma _N&=\frac{1}{(2\pi )^d}\int _{{\mathbb {R}}^d}\int _{{\mathbb {R}}^d}|p|^2{\mathbb {1}}(|p|^2-c_{\mathrm{TF}}\rho (x)\big )\,dx\,dp\\&=\frac{d}{d+2}4\pi ^2\left( \frac{d}{|S^{d-1}|}\right) ^{2/d}\int _{{\mathbb {R}}^d}\rho (x)^{1+2/d}\,dx. \end{aligned}$$

Finally, the results are all the same for an orthogonal projection \(\widetilde{\gamma }_N\) on N first eigenfunctions of \((-i N^{-1/d}\nabla + A)^2_{C_R}-c_{\mathrm{TF}}\rho \) since \(\mathrm{Tr}\,|\gamma _N-\widetilde{\gamma }_N|=o(N)\) by (A.3) and therefore \(\Vert \rho _{\gamma _N}-\rho _{\widetilde{\gamma }_N}\Vert _{L^1}=o(N)\). For N large we have

$$\begin{aligned} {\mathbb {1}}\big ((-i N^{-1/d}\nabla + A)^2_{C_R}\leqslant \rho (x)-\varepsilon \big )\leqslant \widetilde{\gamma }_N\leqslant {\mathbb {1}}\big ((-i N^{-1/d}\nabla + A)^2_{C_R}\leqslant \rho (x)+\varepsilon \big ) \end{aligned}$$

since, by the above arguments with \(\rho \) replaced by \(\rho \pm \varepsilon \),

$$\begin{aligned} \mathrm{Tr}\,{\mathbb {1}}\big ((-i N^{-1/d}\nabla + A)^2_{C_R}\leqslant \rho (x)\pm \varepsilon \big )\sim (1\pm \varepsilon R^d)N. \end{aligned}$$

From the above estimates we conclude that \(\rho _{\widetilde{\gamma }_N}/N\) is bounded in \(L^\infty \), and therefore \(\rho _{\widetilde{\gamma }_N}/N\) has the same weak limit as \(\rho _{\gamma _N}\) in \(L^1\cap L^\infty \). We also have

$$\begin{aligned} \mathrm{Tr}\,((-i N^{-1/d}\nabla + A)^2_{C_R}-c_{\mathrm{TF}}\rho )(\gamma _N-\widetilde{\gamma }_N)=o(N) \end{aligned}$$

which implies that

$$\begin{aligned} \mathrm{Tr}\,(-i N^{-1/d}\nabla + A)^2_{C_R}(\gamma _N-\widetilde{\gamma }_N)=o(N^{1+2/d}) \end{aligned}$$

and concludes the proof of Lemma 3.2. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fournais, S., Lewin, M. & Solovej, J.P. The semi-classical limit of large fermionic systems. Calc. Var. 57, 105 (2018). https://doi.org/10.1007/s00526-018-1374-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1374-2

Mathematics Subject Classification

Navigation