Skip to main content
Log in

Periodic solutions for critical fractional problems

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We deal with the existence of \(2\pi \)-periodic solutions to the following non-local critical problem

$$\begin{aligned} \left\{ \begin{array}{ll} [(-\Delta _{x}+m^{2})^{s}-m^{2s}]u=W(x)|u|^{2^{*}_{s}-2}u+ f(x, u) &{}\quad \text{ in } \; (-\pi ,\pi )^{N} \\ u(x+2\pi e_{i})=u(x) &{}\quad \text{ for } \text{ all } \; x \in \mathbb {R}^{N}, \quad i=1, \dots , N, \end{array} \right. \end{aligned}$$

where \(s\in (0,1)\), \(N \ge 4s\), \(m\ge 0\), \(2^{*}_{s}=\frac{2N}{N-2s}\) is the fractional critical Sobolev exponent, W(x) is a positive continuous function, and f(xu) is a superlinear \(2\pi \)-periodic (in x) continuous function with subcritical growth. When \(m>0\), the existence of a nonconstant periodic solution is obtained by applying the Linking Theorem, after transforming the above non-local problem into a degenerate elliptic problem in the half-cylinder \((-\,\pi ,\pi )^{N}\times (0, \infty )\), with a nonlinear Neumann boundary condition, through a suitable variant of the extension method in periodic setting. We also consider the case \(m=0\) by using a careful procedure of limit. As far as we know, all these results are new.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ambrosetti, A., Rabinowitz, P.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosio, V.: Periodic solutions for a pseudo-relativistic Schrödinger equation. Nonlinear Anal. 120, 262–284 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosio, V.: Periodic solutions for the nonlocal operator pseudo-relativistic \((-\Delta +m^{2})^{s}-m^{2s}\) with \(m\ge 0\). Topol. Methods Nonlinear Anal. 49(1), 75–104 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Ambrosio, V.: Periodic solutions for a superlinear fractional problem without the Ambrosetti–Rabinowitz condition. Discrete Contin. Dyn. Syst. 37(5), 2265–2284 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ambrosio, V.: On the existence of periodic solutions for a fractional Schrödinger equation. In: Proceedings of the American Mathematical Society (to appear). https://doi.org/10.1090/proc/13630

  6. Ambrosio, V.: Multiplicity of positive solutions for a class of fractional Schrödinger equations via penalization method. Ann. Mat. Pure Appl. 196(6), 2043–2062 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ambrosio, V., Molica Bisci, G.: Periodic solutions for nonlocal fractional equations. Commun. Pure Appl. Anal. 16(1), 331–344 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Aubin, T.: Problémes isopérimétriques et espaces de Sobolev. J. Differ. Geom. 11, 573–598 (1976)

    Article  MATH  Google Scholar 

  9. Autuori, G., Fiscella, A., Pucci, P.: Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity. Nonlinear Anal. 125, 699–714 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Barrios, B., Colorado, E., de Pablo, A., Sánchez, U.: On some critical problems for the fractional Laplacian operator. J. Differ. Equ. 252(11), 6133–6162 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Benci, V., Cerami, G.: Existence of positive solutions of the equation \(-\Delta u+a(x)u=u^{\frac{N-2}{N+2}}\) in \({\mathbb{R}}^{N}\). J. Funct. Anal. 88, 90–117 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bènyi, A., Oh, T.: The Sobolev inequality on the torus revisited. Publ. Math. Debr. 83(3), 359–374 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88(3), 486–490 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  14. Brezis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36(4), 437–477 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cabré, X., Solà-Morales, J.: Layer solutions in a half-space for boundary reactions. Commun. Pure Appl. Math. 58, 1678–1732 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cabré, X., Tan, J.: Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224, 2052–2093 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Caffarelli, L.A., Salsa, S., Silvestre, L.: Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. Invent. Math. 171(2), 425–461 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Caffarelli, L.A., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32, 1245–1260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Capozzi, A., Fortunato, D., Palmieri, G.: An existence result for nonlinear elliptic problems involving critical Sobolev exponent. Ann. Inst. H. Poincaré Anal. Nonlinéaire 2(6), 463–470 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chabrowski, J., Yang, J.: On Schrödinger equation with periodic potential and critical Sobolev exponent. Topol. Methods Nonlinear Anal. 12(2), 245–261 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Córdoba, A., Córdoba, D.: A maximum principle applied to quasi-geostrophic equations. Commun. Math. Phys. 249(3), 511–528 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cotsiolis, A., Tavoularis, N.: Best constants for Sobolev inequalities for higher order fractional derivatives. J. Math. Anal. Appl. 295(1), 225–236 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Devillanova, G., Solimini, S.: Concentration estimates and multiple solutions to elliptic problems at critical growth. Adv. Differ. Equ. 7(10), 1257–1280 (2002)

    MathSciNet  MATH  Google Scholar 

  24. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dipierro, S., Medina, M., Peral, I., Valdinoci, E.: Bifurcation results for a fractional elliptic equation with critical exponent in \({\mathbb{R}}^{n}\). Manuscr. Math. 153(1–2), 183–230 (2017)

    Article  MATH  Google Scholar 

  26. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.: Higher Trascendental Functions, vol. 1,2. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  27. Escobar, J.F.: Positive solutions for some semilinear elliptic equations with critical Sobolev exponents. Commun. Pure Appl. Math. 40(5), 623–657 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  28. Fall, M.M., Felli, V.: Unique continuation properties for relativistic Schrödinger operators with a singular potential. Discrete Contin. Dyn. Syst. 35(12), 5827–5867 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Felmer, P., Quaas, A., Tan, J.: Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc. R. Soc. Edinb. Sect. A 142, 1237–1262 (2012)

    Article  MATH  Google Scholar 

  30. Figueiredo, G.M., Furtado, M.F.: Positive solutions for some quasilinear equations with critical and supercritical growth. Nonlinear Anal. TMA 66(7), 1600–1616 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gazzola, F., Ruf, B.: Lower-order perturbations of critical growth nonlinearities in semilinear elliptic equations. Adv. Differ. Equ. 2(4), 555–572 (1997)

    MathSciNet  MATH  Google Scholar 

  32. Han, Y., Zhu, M.: Hardy–Littlewood–Sobolev inequalities on compact Riemannian manifolds and applications. J. Differ. Equ. 260(1), 1–25 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kiselev, A., Nazarov, F., Volberg, A.: Global well-posedness for the critical 2D dissipative quasi-geostrophic equation. Invent. Math. 167, 445–453 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lieb, E.H., Loss, M.: Analysis, Graduate Studies in Mathematics, vol. 14, 2nd edn. American Mathematical Society, Providence (2001)

  35. Lions, P.L.: The concentration-compactness principle in the calculus of variations: the limit case, IIÓ. Rev. Mat. Iberoam. 1, 45–121 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mawhin, J., Molica Bisci, G.: A Brezis–Nirenberg type result for a nonlocal fractional operator. J. Lond. Math. Soc. 95(1), 73–93 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Molica Bisci, G., Rădulescu, V., Servadei, R.: Variational methods for nonlocal fractional problems, with a foreword by Jean Mawhin. In: Encyclopedia of Mathematics and its Applications, vol. 162. Cambridge University Press, Cambridge (2016)

  38. Palatucci, G., Pisante, A.: Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces. Calc. Var. Partial Differ. Equ. 50(3–4), 799–829 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Pucci, P., Saldi, : Critical stationary Kirchhoff equations in \({\mathbb{R}}^{N}\) involving nonlocal operators. Rev. Mat. Iberoam. 32(1), 1–22 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Rabinowitz, P.H.: Minimax methods in critical point theory with applications to differential equations. In: CBMS Regional Conference Series in Mathematics, vol. 65 (1986)

  41. Ryznar, M.: Estimate of Green function for relativistic \(\alpha \)-stable processes. Potential Anal. 17, 1–23 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  42. Roncal, L., Stinga, P.R.: Fractional Laplacian on the torus. Commun. Contemp. Math. 18, 26 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Servadei, R.: The Yamabe equation in a non-local setting. Adv. Nonlinear Anal. 2(3), 235–270 (2013)

    MathSciNet  MATH  Google Scholar 

  44. Servadei, R.: A critical fractional Laplace equation in the resonant case. Topol. Methods Nonlinear Anal. 43(1), 251–267 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Servadei, R., Valdinoci, E.: Variational methods for non-local operators of elliptic type. Discrete Contin. Dyn. Syst. 33, 2105–2137 (2013)

    MathSciNet  MATH  Google Scholar 

  46. Servadei, R., Valdinoci, E.: The Brezis-Nirenberg result for the fractional Laplacian. Trans. Am. Math. Soc. 367(1), 67–102 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. Shang, X., Zhang, J., Yang, Y.: On fractional Schrödinger equation in \({\mathbb{R}}^{N}\) with critical growth. J. Math. Phys. 54(12), 121502, 20 (2013)

    Article  MATH  Google Scholar 

  48. Stinga, P.R., Torrea, J.L.: Extension problem and Harnack’s inequality for some fractional operators. Commun. Partial Differ. Equ. 35, 2092–2122 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Stinga, P.R., Volzone, B.: Fractional semilinear Neumann problems arising from a fractional Keller–Segel model. Calc. Var. Partial Differ. Equ. 54(1), 1009–1042 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. Struwe, M.: Variational methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, vol. 34, 4th edn. Springer, Berlin (2008)

    MATH  Google Scholar 

  51. Tan, J.: The Brezis–Nirenberg type problem involving the square root of the Laplacian. Calc. Var. Partial Differ. Equ. 42(1–2), 21–41 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  52. Tarantello, G.: On nonhomogeneous elliptic equations involving critical Sobolev exponent. Ann. Inst. H. Poincaré Anal. Nonlinéaire 9, 281–304 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  53. Teng, K.: Existence of ground state solutions for the nonlinear fractional Schrödinger–Poisson system with critical Sobolev exponent. J. Differ. Equ. 261(6), 3061–3106 (2016)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The author warmly thanks the anonymous referee for her/his useful and nice comments on the paper. The manuscript has been carried out under the auspices of the INDAM-Gnampa Project 2017 titled: Teoria e modelli per problemi non locali.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Ambrosio.

Additional information

Communicated by A. Malchiodi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambrosio, V. Periodic solutions for critical fractional problems. Calc. Var. 57, 45 (2018). https://doi.org/10.1007/s00526-018-1317-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1317-y

Mathematics Subject Classification

Navigation