Skip to main content
Log in

Variational convergence of discrete geometrically-incompatible elastic models

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We derive a continuum model for incompatible elasticity as a variational limit of a family of discrete nearest-neighbor elastic models. The discrete models are based on discretizations of a smooth Riemannian manifold \(({\mathcal {M}},\mathfrak {g})\), endowed with a flat, symmetric connection \(\nabla \). The metric \(\mathfrak {g}\) determines local equilibrium distances between neighboring points; the connection \(\nabla \) induces a lattice structure shared by all the discrete models. The limit model satisfies a fundamental rigidity property: there are no stress-free configurations, unless \(\mathfrak {g}\) is flat, i.e., has zero Riemann curvature. Our analysis focuses on two-dimensional systems, however, all our results readily generalize to higher dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Acerbi, E., Fusco, N.: Semicontinuity problems in the calculus of variations. Arch. Ration. Mech. Anal. 86, 125–145 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alicandro, R., Cicalse, M., Gloria, A.: Integral representation results for energies defined on stochastic lattices and application to nonlinear elasticity. Arch. Ration. Mech. Anal. 200, 881–943 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Armon, S., Efrati, E., Sharon, E., Kupferman, R.: Geometry and mechanics of chiral pod opening. Science 333, 1726–1730 (2011)

    Article  Google Scholar 

  4. Bilby, B., Bullough, R., Smith, E.: Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry. Proc. R. Soc. A 231, 263–273 (1955)

    Article  MathSciNet  Google Scholar 

  5. Braides, A.: Gamma Convergence for Beginners. Oxford University Press, Oxford (2002)

    Book  MATH  Google Scholar 

  6. Dacorogna, B.: Direct Methods in the Calculus of Variations, 2nd edn. Springer, Berlin (2008)

    MATH  Google Scholar 

  7. dal Maso, G.: An introduction to \(\varGamma \)-Convergence. Birkhauser, Boston (1993)

    Book  Google Scholar 

  8. Efrati, E., Sharon, E., Kupferman, R.: Elastic theory of unconstrained non-Euclidean plates. J. Mech. Phys. Solids 57, 762–775 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Friesecke, G., James, R., Müller, S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity. Commun. Pure Appl. Math. 55, 1461–1506 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goriely, A., Ben Amar, M.: Differential growth and instability in elastic shells. Phys. Rev. Lett. 94(198), 103–4 (2005)

    MATH  Google Scholar 

  11. Klein, Y., Efrati, E., Sharon, E.: Shaping of elastic sheets by prescription of non-Euclidean metrics. Science 315, 1116–1120 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kondo, K.: Geometry of elastic deformation and incompatibility. In: K. Kondo (ed.) Memoirs of the Unifying Study of the Basic Problems in Engineering Science by Means of Geometry, vol. 1, pp. 5–17 (1955)

  13. Kröner, E.: The physics of defects. In: Balian, R., Kleman, M., Poirier, J.P. (eds.) Les Houches Summer School Proceedings. North-Holland, Amsterdam (1981)

    Google Scholar 

  14. Kupferman, R., Maor, C.: A Riemannian approach to the membrane limit in non-Euclidean elasticity. Commun. Contemp. Math. 16, 1350052 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kupferman, R., Maor, C.: The emergence of torsion in the continuum limit of distributed dislocations. J. Geom. Mech. 7, 361–387 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kupferman, R., Maor, C.: Riemannian surfaces with torsion as homogenization limits of locally-Euclidean surfaces with dislocation-type singularities. Proc. R. Soc. Edinb. 146A, 741–768 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kupferman, R., Maor, C., Rosenthal, R.: Non-metricity in the continuum limit of randomly-distributed point defects (2016). Submitted to Israel J. Math

  18. Kupferman, R., Maor, C., Shachar, A.: Asymptotic rigidity of Riemannian manifolds (2017). https://arxiv.org/abs/1701.08892

  19. Le Dret, H., Raoult, A.: The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl. 74, 549–578 (1995)

    MathSciNet  MATH  Google Scholar 

  20. Le Dret, H., Raoult, A.: Homogenization of hexagonal lattices. Netw. Heterog Med. 8, 541–572 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lee, J.: Introduction to Smooth Manifolds, 1st edn. Springer, Berlin (2006)

    Google Scholar 

  22. Lewicka, M., Ochoa, P.: On the variational limits of lattice energies on prestrained elastic bodies. In: Chen, G.Q.G., Grinfeld, M., Knops, R.J. (eds.) Differential Geometry and Continuum Mechanics, Chapter 10, pp. 279–305. Springer, Berlin (2015)

    Chapter  Google Scholar 

  23. Lewicka, M., Pakzad, M.: Scaling laws for non-Euclidean plates and the \(W^{2,2}\) isometric immersions of Riemannian metrics. ESAIM Control Optim. Calc. Var. 17, 1158–1173 (2010)

    Article  MATH  Google Scholar 

  24. Neff, P., Ghiba, I.D., Lankeit, J.: The exponentiated Hencky-logarithmic strain energy. part I: constitutive issues and rank-one convexity. J. Elast. 121, 143–234 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nye, J.: Some geometrical relations in dislocated crystals. Acta Metall. 1, 153–162 (1953)

    Article  Google Scholar 

  26. Ozakin, A., Yavari, A.: A geometric theory of thermal stresses. J. Math. Phys. 51, 032–902 (2009)

    MathSciNet  MATH  Google Scholar 

  27. Šilhavý, M.: Rank 1 convex hulls of isotropic functions in dimension 2 by 2. Math. Bohem. 126, 521–529 (2001)

    MathSciNet  MATH  Google Scholar 

  28. Wang, C.C.: On the geometric structures of simple bodies, a mathematical foundation for the theory of continuous distributions of dislocations. Arch. Ration. Mech. Anal. 27, 33–93 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yavari, A.: A geometric theory of growth mechanics. J. Nonlinear Sci. 20, 781–830 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yavari, A., Goriely, A.: Riemann–Cartan geometry of nonlinear dislocation mechanics. Arch. Ration. Mech. Anal. 205, 59–118 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cy Maor.

Additional information

Communicated by J. Ball.

This research was partially funded by the Israel Science Foundation (Grant No. 661/13), and by a grant from the Ministry of Science, Technology and Space, Israel and the Russian Foundation for Basic Research, the Russian Federation.

Technical lemmas

Technical lemmas

Lemma 6

Let V and W be two-dimensional inner-product spaces. Let \(A\in {\text {Hom}}(V,W)\). If there exist two independent vectors \(x,y\in V\) such that

$$\begin{aligned} |A(x)| = |x|, \qquad |A(y)| = |y| \qquad \text { and }\qquad |A(x+y)| = |x+y|, \end{aligned}$$

then A is an isometry.

Proof

It follows from the polarization identity that \((A(x),A(y)) = (x,y)\), and therefore A preserves the inner-product, hence it is an isometry. \(\square \)

Lemma 7

Let V and W be two-dimensional inner-product spaces. Let \(x,y\in V\) be independent vectors of equal length. Then, for every \(A\in {\text {Hom}}(V,W)\),

$$\begin{aligned} |A|^2 \le \frac{2}{1-\cos \theta }\left( \frac{|Ax|^2}{|x|^2} + \frac{|Ay|^2}{|y|^2} + \frac{|A(x+y)|^2}{|x+y|^2}\right) , \end{aligned}$$

where \(\theta \) is the angle between x and y.

Proof

It suffices to prove the lemma for unit vectors. Denote \(c = \cos \theta = (x,y)\). The vectors x and \((y - c\, x)/\sqrt{1-c^2}\) are orthonormal, hence

$$\begin{aligned} |A|^2 = |Ax|^2 + \frac{|A(y - c\, x)|^2}{1-c^2} = \frac{|Ax|^2 + |Ay|^2 - 2c(Ax,Ay)}{1-c^2}. \end{aligned}$$

Now,

$$\begin{aligned} \begin{aligned} |A|^2&= \frac{2}{1-c} \cdot \frac{1}{2(1+c)} \left( |Ax|^2 + |Ay|^2 - 2c(Ax,Ay)\right) \\&= \frac{2}{1-c} \left( |Ax|^2 + |Ay|^2 + \frac{|A(x+y)|^2 - 2(1+c)(|Ax|^2 + |Ay|^2 + (Ax,Ay))}{|x+y|^2}\right) \\&\le \frac{2}{1-c} \left( |Ax|^2 + |Ay|^2 + \frac{|A(x+y)|^2}{|x+y|^2}\right) , \end{aligned} \end{aligned}$$

where in the last step we used the fact that \(|Ax|^2 + |Ay|^2 + (Ax,Ay) > 0\). \(\square \)

Lemma 8

Let V and W be two-dimensional inner-product spaces. Let \(x,y\in V\) be two independent vectors. Then, there exists a constant C depending continuously on the angle \(\theta \) between x and y and the ratio of their lengths \(r = |y|/|x|\), such that for every \(A\in {\text {Hom}}(V,W)\),

$$\begin{aligned} |A|^2 \le C\left( \frac{|Ax|^2}{|x|^2} + \frac{|Ay|^2}{|y|^2} + \frac{|A(x+y)|^2}{|x+y|^2}\right) . \end{aligned}$$

Proof

Without loss of generality we can assume that \(|y| > |x|\) (otherwise Lemma 7 applies). Set

$$\begin{aligned} v=x+\alpha y \qquad \text { and }\qquad w=(1-\alpha ) y, \end{aligned}$$

where

$$\begin{aligned} \alpha = \frac{r^2-1}{2r(r +\cos \theta )} \end{aligned}$$

is chosen such that \(|v| = |w|\). Also, \(v+w = x+y\). Note that \(\alpha \in \left( (r-1)/2r, (r+1)/2r\right) \subset (0,1)\), and in particular, v and w are independent. The angle between v and w depends only on \(\alpha \) and \(\theta \), and therefore on r and \(\theta \). By the previous lemma, there exists a \(C = C(r,\theta )\) such that

$$\begin{aligned} \begin{aligned} |A|^2&\le C\left( \frac{|Av|^2}{|v|^2} + \frac{|Aw|^2}{|w|^2} + \frac{|A(v+w)|^2}{|v+w|^2}\right) \\&= C\left( \frac{|Ax|^2 + \alpha ^2|Ay|^2 + 2\alpha (Ax,Ay)}{(1-\alpha )^2|y|^2} + \frac{|Ay|^2}{|y|^2} + \frac{|A(x+y)|^2}{|x+y|^2}\right) \\&\le C\left( \frac{|Ax|^2 + \alpha ^2|Ay|^2 + \alpha (|Ax|^2 + |Ay|^2)}{(1-\alpha )^2|y|^2} + \frac{|Ay|^2}{|y|^2} + \frac{|A(x+y)|^2}{|x+y|^2}\right) \\&= C\left( \frac{1+\alpha }{(1-\alpha )^2r^2}\frac{|Ax|^2}{|x|^2} + \left( 1+\frac{\alpha ^2 +\alpha }{(1-\alpha )^2}\right) \frac{|Ay|^2}{|y|^2} + \frac{|A(x+y)|^2}{|x+y|^2}\right) \\&\le C'\left( \frac{|Ax|^2}{|x|^2} + \frac{|Ay|^2}{|y|^2} + \frac{|A(x+y)|^2}{|x+y|^2}\right) , \end{aligned} \end{aligned}$$

where in the passage to the third line we used the inequality \(2ab\le a^2 + b^2\). \(\square \)

Lemma 9

Let V and W be d-dimensional inner-product spaces. Then, for every \(A\in {\text {Hom}}(V,W)\),

$$\begin{aligned} {\text {dist}}^2(A,\text {SO}(V,W)) \le {\text {dist}}^2(A,\text {O}(V,W)) + 4|\det A|^{1/d} \mathbb {1}_{\left\{ \det A<0\right\} }. \end{aligned}$$
(41)

Proof

Let \(\sigma _1\ge \sigma _2\ge \ldots \ge \sigma _d\ge 0\) be the singular values of A. Then

$$\begin{aligned} {\text {dist}}^2(A,\text {O}(V,W)) = \sum _{i=1}^{d} (\sigma _i - 1)^2 \quad \text { and }\quad |\det A| = \prod _{i=1}^{d} \sigma _i \end{aligned}$$

If \(\det A\ge 0\), then

$$\begin{aligned} {\text {dist}}^2(A,\text {SO}(V,W)) = \sum _{i=1}^{d} (\sigma _i - 1)^2 = {\text {dist}}^2(A,\text {O}(V,W)), \end{aligned}$$

which shows the equality in (41) in this case. If \(\det A<0\), then

$$\begin{aligned} \begin{aligned} {\text {dist}}^2(A,\text {SO}(V,W))&= \sum _{i=1}^{d-1} (\sigma _i - 1)^2 + (\sigma _d + 1)^2 \\&= {\text {dist}}^2(A,\text {O}(V,W)) + 4\sigma _d \le {\text {dist}}^2(A,\text {O}(V,W)) + 4|\det A|^{1/d}. \end{aligned} \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kupferman, R., Maor, C. Variational convergence of discrete geometrically-incompatible elastic models. Calc. Var. 57, 39 (2018). https://doi.org/10.1007/s00526-018-1306-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1306-1

Mathematics Subject Classification

Navigation