Skip to main content
Log in

Dense neural networks in knee osteoarthritis classification: a study on accuracy and fairness

  • S.I. : Information, Intelligence, Systems and Applications
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Dense neural networks (DNNs) are a powerful class of learning algorithms that uses multiple layers to progressively extract higher level features from raw input. Either deep or shallow, their outstanding capabilities made a very significant impact on improving the diagnostic potential in multiple applications including medical data classification. In this research work, DNN and Machine Learning (ML) models are explored to address the diagnosis problem of knee osteoarthritis classification which is a common complex problem in older adults. Knee OA diagnosis is a highly complex problem being related to a large number of medical risk factors including advanced age, gender, hormonal status, body weight or size, family history of disease, etc. The main research objective of this study is to apply DNN in knee osteoarthritis classification and validate it for the first time with respect to both accuracy and fairness. To accomplish this, a hybrid criterion including accuracies, confusion matrix and two fairness metrics (demographic parity (DP) and balanced equalized odds (BEO)) were employed to validate the performance of the proposed methodology. Different subgroups of control participants from self-reported clinical data were considered to prove the performance of the proposed methodology. The best performing DNN method is compared with some popular and well-known machine learning techniques for classification with respect to accuracy and fairness. The results of the conducted experimental analysis show the efficacy of the proposed DNN approach improving the classification accuracy (up to 79.6%) and fairness (BEO: ~ 92% and DP: 98.5%) in the OA case study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Prieto-Alhambra D, Judge A, Javaid M et al (2013) Incidence and risk factors for clinically diagnosed knee, hip and hand osteoarthritis: influences of age, gender and osteoarthritis affecting other joints. Ann Rheum Dis 73:1659–1664. https://doi.org/10.1136/annrheumdis-2013-203355

    Article  Google Scholar 

  2. Martin D (1994) Pathomechanics of knee osteoarthritis. Med Sci Sports Exerc 26(12):1429–1434. https://doi.org/10.1249/00005768-199412000-00003

    Article  Google Scholar 

  3. Peat G, McCarney R, Croft P (2001) Knee pain and osteoarthritis in older adults: a review of community burden and current use of primary health care. Ann Rheum Dis 60(2):91–97. https://doi.org/10.1136/ard.60.2.91

    Article  Google Scholar 

  4. Dieppe P (1993) Management of osteoarthritis of the hip and knee joints. Curr Opin Rheumatol 5:487–493. https://doi.org/10.1097/00002281-199305040-00014

    Article  Google Scholar 

  5. Ackerman I, Kemp J, Crossley K et al (2017) Hip and knee Osteoarthritis affects younger people, too. J Orthop Sports Phys Ther 47:67–79. https://doi.org/10.2519/jospt.2017.7286

    Article  Google Scholar 

  6. Wang T, Wen C, Yan C et al (2013) Spatial and temporal changes of subchondral bone proceed to microscopic articular cartilage degeneration in guinea pigs with spontaneous osteoarthritis. Osteoarthr Cartil 21:574–581. https://doi.org/10.1016/j.joca.2013.01.002

    Article  Google Scholar 

  7. Janvier T, Jennane R, Toumi H, Lespessailles E (2017) Subchondral tibial bone texture predicts the incidence of radiographic knee osteoarthritis: data from the Osteoarthritis Initiative. Osteoarthr Cartil 25:2047–2054. https://doi.org/10.1016/j.joca.2017.09.004

    Article  Google Scholar 

  8. Shamir L, Ling S, Scott W et al (2009) Early detection of radiographic knee osteoarthritis using computer-aided analysis. Osteoarthr Cartil 17:1307–1312. https://doi.org/10.1016/j.joca.2009.04.010

    Article  Google Scholar 

  9. Antony J, McGuinness K, O'Connor N, Moran K, (2016) Quantifying radiographic knee osteoarthritis severity using deep convolutional neural networks. In: 23rd International Conference on Pattern Recognition (ICPR), 2016, pp 1195–1200.

  10. Hayashi D, Roemer F, Jarraya M, Guermazi A (2017) Imaging in Osteoarthritis. Radiol Clin North Am 55:1085–1102. https://doi.org/10.1016/j.rcl.2017.04.012

    Article  Google Scholar 

  11. Guermazi A, Hayashi D, Roemer F, Felson D (2013) Osteoarthritis: a review of strengths and weaknesses of different imaging options. Rheum Dis Clin North Am 39:567–591. https://doi.org/10.1016/j.rdc.2013.02.001

    Article  Google Scholar 

  12. Zhang W, Doherty M, Peat G et al (2009) EULAR evidence-based recommendations for the diagnosis of knee osteoarthritis. Ann Rheum Dis 69:483–489. https://doi.org/10.1136/ard.2009.113100

    Article  Google Scholar 

  13. Beynon M, Jones L, Holt C (2006) Classification of osteoarthritic and normal knee function using three-dimensional motion analysis and the Dempster-Shafer theory of evidence. IEEE Trans Syst Man CybernPart A Syst Hum 36:173–186. https://doi.org/10.1109/tsmca.2006.859098

    Article  Google Scholar 

  14. Mezghani N, Boiven K, Turcot K, Aissaoui R (2008) Hagmeister N and De Guise J A (2008) Hierarchical analysis and classification of asymptomatic and knee osteoarthritis gait patterns using a wavelet representation of kinetic data and the nearest neighbor classifier. J Mech Med Biol 8(1):45–54

    Article  Google Scholar 

  15. Moustakidis S, Theocharis J, Giakas G (2010) A fuzzy decision tree-based SVM classifier for assessing osteoarthritis severity using ground reaction force measurements. Med Eng Phys 32:1145–1160. https://doi.org/10.1016/j.medengphy.2010.08.006

    Article  Google Scholar 

  16. Kotti M, Duffell L, Faisal A, McGregor A (2013) Towards automatically assessing osteoarthritis severity by regression trees & SVMs. In: XXIV Congress of the International Society of Biomechanics.

  17. Şen Köktaş N, Yalabik N and Yavuzer G (2006) Ensemble classifiers for medical diagnosis of knee osteoarthritis using gait data. In: Proceedings - 5th International Conference on Machine Learning and Applications, ICMLA 2006.

  18. Şen Köktaş N, Yalabik N, Yavuzer G, Duin R (2010) A multi-classifier for grading knee osteoarthritis using gait analysis. Pattern Recogn Lett 31:898–904. https://doi.org/10.1016/j.patrec.2010.01.003

    Article  Google Scholar 

  19. Kotti M, Duffell L, Faisal A, McGregor A (2017) Detecting knee osteoarthritis and its discriminating parameters using random forests. Med Eng Phys 43:19–29. https://doi.org/10.1016/j.medengphy.2017.02.004

    Article  Google Scholar 

  20. de Dieu Uwisengeyimana J, Ibrikci T (2017) Diagnosing knee Osteoarthritis using artificial neural networks and deep learning. Biomed Stat Inf 2(3):95

    Google Scholar 

  21. Brahim A, Jennane R, Riad R et al (2019) A decision support tool for early detection of knee OsteoArthritis using X-ray imaging and machine learning: Data from the OsteoArthritis Initiative. Comput Med Imaging Graph 73:11–18. https://doi.org/10.1016/j.compmedimag.2019.01.007

    Article  Google Scholar 

  22. Antony, J, et al. (2017) Quantifying radiographic knee osteoarthritis severity using deep convolutional neural networks. In: Proceedings - International Conference on Pattern Recognition.

  23. Antony J, et al (2017) Automatic detection of knee joints and quantification of knee osteoarthritis severity using convolutional neural networks, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp 376–390.

  24. Tiulpin A et al (2018) Automatic knee osteoarthritis diagnosis from plain radiographs: a deep learning-based approach. Sci Rep 8(1):1727

    Article  Google Scholar 

  25. Pedoia V, Lee J, Norman B et al (2019) Diagnosing osteoarthritis from T2 maps using deep learning: an analysis of the entire Osteoarthritis Initiative baseline cohort. Osteoarthr Cartil 27:1002–1010. https://doi.org/10.1016/j.joca.2019.02.800

    Article  Google Scholar 

  26. Binns R (2018) Fairness in machine learning: lessons from political philosophy. In: Proceedings of the 1st conference on fairness, accountability and transparency, PMLR, vol 81, pp 149–159

  27. Hutchinson B, Mitchell M (2019) 50 Years of Test (Un) fairness: Lessons for Machine Learning. In Proceedings of the Conference on Fairness, Accountability, and Transparency. ACM, pp 49–58.

  28. Verma S, Rubin J (2018) Fairness definitions explained. In: 2018 IEEE/ACM International Workshop onSoftware Fairness (FairWare). IEEE, pp 1–7

  29. Saxena NA, Huang K, DeFilippis E, Radanovic G, Parkes DC, Liu Y (2019) How do fairness definitions fare? examining public attitudes towards algorithmic definitions of fairness. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society (AIES ’19). Association for Computing Machinery, New York, NY, USA, pp 99–106. https://doi.org/10.1145/3306618.3314248

  30. Moustakidis S, Christodoulou E, Papageorgiou E et al (2019) Application of machine intelligence for osteoarthritis classification: a classical implementation and a quantum perspective. Quantum Mach Intell 1:73–86. https://doi.org/10.1007/s42484-019-00008-3

    Article  Google Scholar 

  31. Christodoulou E, Moustakidis S, Papandrianos N, Tsaopoulos D, Papageorgiou E (2019) Exploring deep learning capabilities in knee osteoarthritis case study for classification. In: 10th International Conference on Information, Intelligence, Systems and Applications (IISA), PATRAS, Greece, 2019, pp 1–6. https://doi.org/10.1109/IISA.2019.8900714

  32. Eckstein F, Wirth W, Nevitt M (2012) Recent advances in osteoarthritis imaging—the Osteoarthritis Initiative. Nat Rev Rheumatol 8:622–630. https://doi.org/10.1038/nrrheum.2012.113

    Article  Google Scholar 

  33. https://oai.epi-ucsf.org/datarelease/docs/presentations/oarsi092009/MN_OARSI2009WS.pdf

  34. https://oai.epi-ucsf.org/datarelease/docs/presentations/acr102008/MNACR2008.pdf

  35. Malley B, Ramazzotti D, Wu JT (2016) Data pre-processing. In: Secondary analysis of electronic health records. Springer, Cham. https://doi.org/10.1007/978-3-319-43742-2_12

    Chapter  Google Scholar 

  36. Nguyen H, Cooper E, Kamei K (2011) Borderline over-sampling for imbalanced data classification. Int J Knowl Eng Soft Data Paradig 3:4. https://doi.org/10.1504/ijkesdp.2011.039875

    Article  Google Scholar 

  37. Wang Q, Luo Z, Huang J, Feng Y, Liu Z (2017) A novel ensemble method for imbalanced data learning: bagging of extrapolation-SMOTE SVM. Comput Intell Neurosci. https://doi.org/10.1155/2017/1827016

    Article  Google Scholar 

  38. https://h2o-release.s3.amazonaws.com/h2o/rel-turan/4/docs-website/h2o-py/docs/modeling.html#h2odeeplearningestimator

  39. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444. https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  40. Lecun Y, Chopra S, Hadsell R, Ranzato MA, Huang FJ (2006) A tutorial on energy-based learning. In: Bakir G, Hofman T, Scholkopt B, Smola A, Taskar B (eds) Predicting structured data. MIT Press

  41. Zeiler M D (2012) ADADELTA: an adaptive learning rate method,” arXiv preprint arXiv:1212.5701.

  42. Kusner MJ, Loftus J, Russell C, Silva R (2017) Counterfactual fairness. In: Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, Garnett R (eds) Advances in neural information processing systems 30. Curran Associates Inc, New York, pp 4066–4076

    Google Scholar 

  43. Atkeson CG, Moore AW, Schaal S (1997) Locally weighted learning. Artif Intell Rev 11:11–73

    Article  Google Scholar 

  44. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    Article  MATH  Google Scholar 

  45. Scholkopf B, (1997) Support vector learning, Ph. D. thesis, Technische Universitat Berlin.

  46. Freund Y, Schapire R (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55(1):119–139

    Article  MathSciNet  MATH  Google Scholar 

  47. Breiman L (2001) Random forests. Mach learn 45(1):5–32

    Article  MATH  Google Scholar 

  48. Lim J, Kim J, Cheon S (2019) A deep neural network-based method for early detection of osteoarthritis using statistical data. Int J Environ Res Public Health 16(7):1281. https://doi.org/10.3390/ijerph16071281

    Article  Google Scholar 

  49. Alexos A, Moustakidis S, Kokkotis C, Tsaopoulos D (2020) Physical activity as a risk factor in the progression of osteoarthritis: a machine learning perspective. Lect Notes Comput Sci. https://doi.org/10.1007/978-3-030-53552-0_3

    Article  Google Scholar 

  50. Kokkotis C, Moustakidis S, Papageorgiou E, Giakas G, Tsaopoulos D (2020) Machine learning in knee osteoarthritis: a review. Osteoarthr Cartil Open 2(3):100069. https://doi.org/10.1016/j.ocarto.2020.100069

    Article  Google Scholar 

Download references

Acknowledgements

Part of this work has received funding from the European Community’s H2020 Programme, under grant agreement Nr. 777159 (OACTIVE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serafeim Moustakidis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moustakidis, S., Papandrianos, N.I., Christodolou, E. et al. Dense neural networks in knee osteoarthritis classification: a study on accuracy and fairness. Neural Comput & Applic 35, 21–33 (2023). https://doi.org/10.1007/s00521-020-05459-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-05459-5

Keywords

Navigation