Neural network and multi-objective optimization of confined flow characteristics on circular cylinder in standing double vortex region

Abstract

The unsteady state and isothermal two dimensional numerical computations were carried out using Ansys Fluent-18 between the Reynolds number ranges 10 to 50. The blockage ratios (Domain height to the circular cylinder diameter) range 1.54–112. The flow characteristics such as drag coefficients and length of recirculation are optimized and correlated as a function of various Reynolds numbers at different blockage ratios. Gradual decrease in blockage ratio which means the increase in blockage effect postponed the flow separation, transition and reduces the length of recirculation and also makes the flow steady. In this study optimum flow characteristics exist at maximum blockage ratio, i.e. with minimum blockage effect and maximum Reynolds number. The artificial neural networks model proved to predict values of the total drag coefficient (R2 = 0.979) and length of recirculation (R2 = 0.992) closer to simulated data at 95% (α = 0.05) confident interval.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Abbreviations

ζ :

Distinguishing coefficient

F T :

Tangential force

ρ :

Fluid density

C DF :

Frictional drag coefficient

U :

Free stream velocities

F N :

Normal pressure force

C Dp :

Pressure drag coefficient

Re:

Reynolds number

d :

Diameter of the cylinder

η ij :

Signal noise ratio

Γ :

Grey relational grade

Χ :

Grey relational coefficient

R j :

Actual output of flow simulation

tR j :

Predicted neural network total drag coefficient output

N :

Total number of measurement values

L w :

Length of recirculation

L :

Length of computational domain

r :

Radius of circular cylinder

References

  1. 1.

    Kawaguti M, Jain P (1966) Numerical study of a viscous fluid flow past a circular cylinder. J Phys Soc Jpn 21:2055–2062. https://doi.org/10.1143/JPSJ.21.2055

    Article  Google Scholar 

  2. 2.

    Hamielec AE, Raal JD (1969) Numerical studies of viscous flow around circular cylinders. Phys Fluids 12:11–17. https://doi.org/10.1063/1.1692253

    Article  MATH  Google Scholar 

  3. 3.

    Dennis SCR, Chang GZ (1970) Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100. J Fluid Mech 42:471–489. https://doi.org/10.1017/S0022112070001428

    Article  MATH  Google Scholar 

  4. 4.

    Coutanceau M, Bouard R (1977) Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation Part 1 Steady flow. J Fluid Mech 79:231–256. https://doi.org/10.1017/S0022112077000135

    Article  Google Scholar 

  5. 5.

    Fornberg B (1980) A numerical study of steady viscous flow past a circular cylinder. J Fluid Mech 98:819–855. https://doi.org/10.1017/S0022112080000419

    Article  MATH  Google Scholar 

  6. 6.

    Fornberg B (1985) Steady viscous flow past a circular cylinder up to Reynolds number 600. J Comput Phys 61:297–320. https://doi.org/10.1016/0021-9991(85)90089-0

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Braza M, Chassaing P, Minh HH (1986) Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder. J Fluid Mech 166:79–130. https://doi.org/10.1017/S0022112086003014

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Sahin M, Owens RG (2004) A numerical investigation of wall effects up to high blockage ratios on two-dimensional flow past a confined circular cylinder. Flow Phys 16:1305–1320. https://doi.org/10.1063/1.1668285

    Article  MATH  Google Scholar 

  9. 9.

    Chakraborty J, Verma N, Chhabra RP (2004) Wall effects in flow past a circular cylinder in a plane channel: a numerical study. J Chem Eng Proc 43:1529–1537. https://doi.org/10.1016/j.cep.2004.02.004

    Article  Google Scholar 

  10. 10.

    Sen S, Mitatal S, Biswas G (2009) Steady separated flow past a circular cylinder at low Reynolds numbers. J Fluid Mech 620:89–119. https://doi.org/10.1017/s0022112008004904

    Article  MATH  Google Scholar 

  11. 11.

    Pearson K (1901) On lines and planes of closest fit to systems of points in space. Philos Mag Ser 62:559–572. https://doi.org/10.1080/14786440109462720

    Article  MATH  Google Scholar 

  12. 12.

    Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 2:417–441. https://doi.org/10.1037/h0071325

    Article  MATH  Google Scholar 

  13. 13.

    Lua HS, Chang CK, Hwanga NC, Chung CT (2009) Grey relational analysis coupled with principal component analysis for optimization design of the cutting parameters in high-speed end milling. J Mater Process Technol 209:3808–3817. https://doi.org/10.1016/j.jmatprotec.2008.08.030

    Article  Google Scholar 

  14. 14.

    Chiang Y-M, Hsieh H-H (2009) The use of the Taguchi method with grey relational analysis to optimize the thin-film sputtering process with multiple quality characteristic in color filter manufacturing. Comput Ind Eng 56:648–661. https://doi.org/10.1016/j.cie.2007.12.020

    Article  Google Scholar 

  15. 15.

    Manivannan S, Devi SP, Arumugam R, Sudharsan NM (2011) Multi-objective optimization of flat plate heat sink using Taguchi-based Grey relational analysis. Int J Adv Manuf Technol 52:739–749. https://doi.org/10.1007/s00170-010-2754-8

    Article  Google Scholar 

  16. 16.

    Prabhu S, Uma M, Vinayagam BK (2015) Surface roughness prediction using Taguchi-fuzzy logic-neural network analysis for CNT nanofluids based grinding process. Neural Comput Appl 26(1):41–55

    Article  Google Scholar 

  17. 17.

    Fujisawa N (2002) Neural network control of vortex shedding from a circular cylinder using rotational feedback oscillations. J Fluids Struct 16(1):113–119. https://doi.org/10.1006/jfls.2001.0414

    Article  Google Scholar 

  18. 18.

    Jin Xiaowei, Cheng Peng, Chen Wen-Li, Li Hui (2018) Prediction model of velocity field around circular cylinder over various Reynolds numbers by fusion convolutional neural networks based on pressure on the cylinder. Phys Fluids 30:047105. https://doi.org/10.1063/1.5024595

    Article  Google Scholar 

  19. 19.

    Fernández-Cabán PL, Masters FJ, Phillips BM (2018) Predicting roof pressures on a low-rise structure from free stream turbulence using artificial neural networks. Front Built Environ 4:68. https://doi.org/10.3389/fbuil.2018.00068

    Article  Google Scholar 

  20. 20.

    Dehkordia EK, Goodarzia M, Nourbakhshb SH (2018) Optimal active control of laminar flow over a circular cylinder using Taguchi and ANN. Eur J Mech B/Fluids 67:104–115. https://doi.org/10.1016/j.euromechflu.2017.08.005

    MathSciNet  Article  Google Scholar 

  21. 21.

    Valenti D, Magazzù L, Caldara P, Spagnolo B (2015) Stabilization of quantum meta-stable states by dissipation. Phy Rev B 91:235–412. https://doi.org/10.1103/physrevb.91.235412

    Article  Google Scholar 

  22. 22.

    Valenti D, Tranchina L, Brai M, Caruso A, Cosentino C, Spagnolo B (2008) Environmental metal pollution considered as noise: effects on the spatial distribution of benthic foraminifera in two Coastal marine areas of Sicily (Southern Italy). Ecol Model 213:449–462

    Article  Google Scholar 

  23. 23.

    Spagnolo B, Valenti D, Guarcello C, Carollo A, Persano Adorno D, Spezia S, Pizzolato N, DiPaola B (2015) Noise-inducedeffectsinnonlinearrelaxationofcondensedmattersystems, nonlinear science, and non-equilibrium and complex phenomena. Chaos Solitons Fract. https://doi.org/10.1016/j.chaos.2015.07.023

    Article  Google Scholar 

  24. 24.

    La Barbera A, Spagnolo B (2002) Spatio-temporal patterns in population dynamics. Phys A 314:120–124

    MathSciNet  Article  Google Scholar 

  25. 25.

    Chichigina Olga A, Dubkov Alexander A, Valenti Davide, Spagnolo Bernardo (2011) Stability in a system subject to noise with regulated periodicity. Phy Rev E 84:021134. https://doi.org/10.1103/PhysRevB.91.235412

    Article  Google Scholar 

  26. 26.

    D’Alessio SJD, Dennis SCR (1994) A vorticity model for viscous flow past a cylinder. Comput Fluids 23:279. https://doi.org/10.1016/0045-7930(94)90041-8

    Article  MATH  Google Scholar 

  27. 27.

    Mettu S, Verma N, Chhabra RP (2006) Momentum and heat transfer from an asymmetrically confined circular cylinder in a plane channel. Int J Heat Mass Transf 42:1037–1048

    Article  Google Scholar 

Download references

Acknowledgement

We sincerely acknowledge the computing facilities in product development and computational fluid dynamics laboratories at Department of Mechanical engineering, SRMIST.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sethuramalingam Prabhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Senthilkumar, R., Vasudevan, P. & Prabhu, S. Neural network and multi-objective optimization of confined flow characteristics on circular cylinder in standing double vortex region. Neural Comput & Applic 33, 1379–1398 (2021). https://doi.org/10.1007/s00521-020-05079-z

Download citation

Keywords

  • Reynolds number
  • ANOVA
  • Neural network
  • Flow characteristics