Domain knowledge graph-based research progress of knowledge representation

Abstract

Domain knowledge graph has become a research topic in the era of artificial intelligence. Knowledge representation is the key step to construct domain knowledge graph. There have been quite a few well-established general knowledge graphs. However, there are still gaps on the domain knowledge graph construction. The research introduces the related concepts of the knowledge representation and analyzes knowledge representation of knowledge graphs by category, which includes some classical general knowledge graphs and several typical domain knowledge graphs. The paper also discusses the development of knowledge representation in accordance with the difference of entities, relationships and properties. It also presents the unsolved problems and future research trends in the knowledge representation of domain knowledge graph study.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Jue W, Xiaohong Y, Chunyi S, Jigang H (1995) Discussions on knowledge representation. Chin J Comput 18(3):212–224

    Google Scholar 

  2. 2.

    Yanghua X (2018) Problems and measures in the implementation of domain knowledge graph. https://blog.csdn.net/xinshucredit/article/details/84852877. Accessed 14 Apr 2020

  3. 3.

    Shan F, Ailin L, Shu Y (2019) The concept and application of knowledge graph. Inf Commun Technol Policy 299(05):17–20

    Google Scholar 

  4. 4.

    Development Report of Knowledge Graph in 2018 (2018) Chinese Information Processing Society of China

  5. 5.

    Xu/Shi/Quan et al (2017) The most comprehensive review of knowledge graph: concept and construction technology (TUG). https://mp.weixin.qq.com/s/bhk6iZdphif74HJlyUZOBQ. Accessed 05 Jan 2020

  6. 6.

    Jun Z (2018) Knowledge graph. Higher Education Press, Beijing

  7. 7.

    Miller GA (1995) WordNet: a lexical database for English. Commun Assoc Comput Mach 38(11):39–41. https://doi.org/10.1145/219717.219748

    Article  Google Scholar 

  8. 8.

    Miller GA, Beckwith R, Fellbaum C et al (1990) Introduction to WordNet: an on-line lexical database*. Int J Lexicogr 3(4):235–244. https://doi.org/10.1093/ijl/3.4.235

    Article  Google Scholar 

  9. 9.

    Tianshun Y, Li Z, Zhu G (2001) Introduction of WordNet. Appl Linguist 1:27–32

    Google Scholar 

  10. 10.

    Lenat DB (1995) CYC: a large-scale investment in knowledge infrastructure. Commun ACM 38(11):32–38. https://doi.org/10.1145/219717.219745

    Article  Google Scholar 

  11. 11.

    Speer R, Havasi C (2012) Representing general relational knowledge in ConceptNet 5. In: LREC, pp 3679–3686

  12. 12.

    Zhao J, Sun N (2020) Government subsidies-based profits distribution pattern analysis in closed-loop supply chain using game theory. Neural Comput Appl 32:1715–1724

    Article  Google Scholar 

  13. 13.

    Gupta P, Sharma TK, Mehrotra D et al (2019) Knowledge building through optimized classification rule set generation using genetic based elitist multi objective approach. Neural Comput Appl 31:845–855

    Article  Google Scholar 

  14. 14.

    Xu Z, Zhang H, Hu C, Mei L, Xuan J, Choo K-KR, Sugumaran V, Zhu Y (2016) Building knowledge base of urban emergency events based on crowd sourcing of social media. Concurr Comput Pract Exp 28(15):4038–4052

    Article  Google Scholar 

  15. 15.

    Najmi E, Hashmi K, Malik Z, et al (2014) ConceptOnto: an upper ontology based on ConceptNet. In: IEEE/ACS international conference on computer systems & applications. https://doi.org/10.1109/AICCSA.2014.7073222

  16. 16.

    Liu H, Singh P (2004) ConceptNet: a practical commonsense reasoning tool-kit. BT Technol J 22(4):211–226. https://doi.org/10.1023/B:BTTJ.0000047600.45421.6d

    Article  Google Scholar 

  17. 17.

    Commonsense Computing Initiative (2020) ConceptNet. http://www.conceptnet.io/. Accessed 22 Dec 2019

  18. 18.

    Speer R, Havasi C (2013) ConceptNet 5: a large semantic network for relational knowledge. In: Gurevych I, Kim J (eds) The people’s web meets NLP. Theory and applications of natural language processing. Springer, Berlin. https://doi.org/10.1007/978-3-642-35085-6_6

  19. 19.

    Europeana (2020) Linked open data. https://pro.europeana.eu/page/linked-open-data. Accessed 20 Mar 2020

  20. 20.

    Vrandecic D, Krtoetzsch M (2014) Wikidata: a free collaborative knowledge base. Commun ACM 57(10):78–85. https://doi.org/10.1145/2629489

    Article  Google Scholar 

  21. 21.

    F.M. Suchanek, G. Kasneci, G. Weikum (2007) YAGO: a core of semantic knowledge. In: Proceedings of the 16th international conference on World Wide Web, Banff, Canada, pp 697–706. https://doi.org/10.1145/1242572.1242667

  22. 22.

    Singhal A (2012) Introducing the knowledge graph: things, not strings. https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html. Accessed 26 Mar 2020

  23. 23.

    Bollacker KD, Evans C, Paritosh P, et al (2008) Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the ACM SIGMOD international conference on management of data, SIGMOD 2008, Vancouver, BC, Canada, 10–12 June, ACM. https://doi.org/10.1145/1376616.1376746

  24. 24.

    Hoffart J, Suchanek FM, Berberich K et al (2013) YAGO2: a spatially and temporally enhanced knowledge base from Wikipedia. Artif Intell 194:28–61. https://doi.org/10.1016/j.artint.2012.06.001

    MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    Suchanek FM, Kasneci G, Weikum AG (2008) Yago: a large ontology from Wikipedia and WordNet. J Web Semant 6(3):203–217. https://doi.org/10.1016/j.websem.2008.06.001

    Article  Google Scholar 

  26. 26.

    Ringler D, Paulheim H (2017) One knowledge graph to rule them all? Analyzing the differences between DBpedia, YAGO, Wikidata & Co. In: Kern-Isberner G, Fürnkranz J, Thimm M (eds) KI 2017: advances in artificial intelligence. KI 2017. Lecture notes in computer science, vol 10505. Springer, Cham. https://doi.org/10.1007/978-3-319-67190-1_33

  27. 27.

    Uyar A, Aliyu FM (2015) Evaluating search features of Google knowledge graph and bing satori entity types, list searches and query interfaces. Online Inf Rev 39(2):197–213. https://doi.org/10.1108/OIR-10-2014-0257

    Article  Google Scholar 

  28. 28.

    Bollacker K, Cook R, Tufts P (2007) Freebase: a shared database of structured general human knowledge. In: Proceedings of the twenty-second AAAI conference on artificial intelligence, 22–26 July 2007, Vancouver, British Columbia, Canada. https://www.aaai.org/Papers/AAAI/2007/AAAI07-355.pdf

  29. 29.

    Jun L (2011) Research on semantic database freebase. New Technol Libr Inf Serv 27(10):18–23

    Google Scholar 

  30. 30.

    Bin W, Jial F (2013) Further study in freebase with property coordinate system theory. Microcomput Appl. https://doi.org/10.1145/176789.176804

    Article  Google Scholar 

  31. 31.

    Yifeng R (2008) Research on freebase (TUG), http://www.ruanyifeng.com/blog/2008/04/freebase_reloaded.html. Accessed 26 Dec 2019

  32. 32.

    Danzhuzhu (2013) Introduction to freebase (TUG). http://blog.maidou.info/?p=169. Accessed 26 Dec 2019

  33. 33.

    Creative Commons (2020) GeoName. http://www.geonames.org/. Accessed 30 Mar 2020

  34. 34.

    Bukun (2016) Introduction to the global geographic names database, GeoName. https://www.osgeo.cn/post/04b2. Accessed 30 Mar 2020

  35. 35.

    Wei Yong H, Danlu LX, Fei W (2016) Geographic name full text query based GeoNames and Solr. Eng Surv Mapp 25(2):28–32

    Google Scholar 

  36. 36.

    GeoNames (2020) Datasources used by GeoNames in the GeoNames Gazettee. http://www.geonames.org/data-sources.html. Accessed 30 Mar 2020

  37. 37.

    Uche Ogbuji (2008) Open geographic information systems at Geonames.org. https://www.ibm.com/developerworks/cn/web/wa-realweb7/. Accessed 30 Mar 2020

  38. 38.

    Maltese V, Farazi F (2013) A semantic schema for GeoNames. In: INSPIRE 2013

  39. 39.

    Ahlers D (2013) Assessment of the accuracy of GeoNames gazetteer data. Workshop on geographic information retrieval. https://doi.org/10.1145/2533888.2533938

  40. 40.

    Yang YJ, Xu B, Hu JW, Tong MH, Zhang P, Zheng L (2018) Accurate and efficient method for constructing domain knowledge graph. J Softw 29(10):2931–2947. https://doi.org/10.13328/j.cnki.jos.005552

    Article  Google Scholar 

  41. 41.

    World Health Organization (2018) ICD-11 for mortality and morbidity statistics (ICD-11 MMS) 2018 version. https://icd.who.int/browse11/l-m/en. Accessed 1 Apr 2020

  42. 42.

    Zhou S, Luo P, Jain DK, Lan X, Zhang Y (2019) Double-domain imaging and adaption for person re-identification. IEEE Access 7:103336–103345

    Article  Google Scholar 

  43. 43.

    NML (2019) Unified medical language system. https://www.nlm.nih.gov/research/umls/index.html. Accessed 01 Apr 2020

  44. 44.

    Lirong J, Jing L, Tong Y et al (2015) Construction of traditional Chinese medicine knowledge graph. J Med Intell 2015(8):51–53

    Google Scholar 

  45. 45.

    Tong R, Chenglin S, Haofen W et al (2016) Construction of traditional Chinese medicine knowledge graph and its application. J Med Inform 37(4):8–14

    Google Scholar 

  46. 46.

    Dezheng Z, Yonghong X, Man L, Chuan S (2017) Construction of knowledge graph of traditional Chinese medicine based on the ontology. Technol Intell Eng 3(1):035–042. https://doi.org/10.3772/j.issn.95-915x.2017.01.004

    Article  Google Scholar 

  47. 47.

    Odmaa BYAMBASUREN, Yunfei YANG, Zhifang SUI, Damai DAI, Baobao CHANG, Sujian LI, Hongying ZAN (2019) Preliminary study on the construction of Chinese medical knowledge graph. J Chin Inf Process 33(10):1–7. https://doi.org/10.3390/info11040186

    Article  Google Scholar 

  48. 48.

    The Institute of Computational Linguistics, Peking University, et al (2018) CMeKG2.0. http://zstp.pcl.ac.cn:8002/. Accessed 02 Apr 2020

  49. 49.

    Ali (2013) E-commerce semantic base. https://wenku.baidu.com/view/1f20d94a43323968001c9254.html. Accessed 05 Apr 2020

  50. 50.

    Zhou S, Ke M, Luo P (2019) Multi-camera transfer GAN for person re-identification. J Vis Commun Image Represent 59:393–400

    Article  Google Scholar 

  51. 51.

    Shengchun D, Linlin H, Ying W (2019) Product knowledge map construction based on the e-commerce data. Data Anal Knowl Discov. https://doi.org/10.1142/S021800141951008X

    Article  Google Scholar 

  52. 52.

    Da X, Chuanwei R, Korpeoglu E, Kumar S, Achan K (2019) Product knowledge graph embedding for e-commerce. arXiv:1911.12481

  53. 53.

    Ali Technology (2018) The knowledge graph born for e-commerce, how to respond to user demand (TUG). https://mp.weixin.qq.com/s/RoiIHPCV3vXAH_sUHhTOYw. Accessed 29 Dec 2019

  54. 54.

    Xusheng L, Yonghua Y, Zhu KQ, Yu G, Keping Y (2018) Conceptualize and infer user needs in e-commerce. In: The 28th ACM international conference. https://doi.org/10.1145/3357384.3357812

  55. 55.

    Bordes A, Weston J, Collobert R, et al (2011) Learning structured embeddings of knowledge bases. In: Proceedings of AAAI. AAAI, Menlo Park, pp 301–306

  56. 56.

    Bordes A, Usunier N, Garcia-Duran A, et al (2013) Translating embeddings for modeling multirelational data. In: Proceedings of NIPS. MIT Press, Cambridge, pp 2787–2795

  57. 57.

    Zhiyuan L, Maosong S, Yankai L, Ruobing X (2016) Knowledge representation learning: a review. J Comput Res Dev 53(2):247–261

    Google Scholar 

Download references

Acknowledgements

Teaching Reform Research Project of Undergraduate Colleges and Universities of Shandong Province (Z2016Z036), the Teaching Reform Research Project of Shandong University of Finance and Economics (jy2018062891470, jy201830, jy201810), Shandong Provincial Social Science Planning Research Project (18CHLJ08), Scientific Research Projects of Universities in Shandong Province (J18RA136), Youth Innovative on Science and Technology Project of Shandong Province (2019RWF013), SDUST Excellent Teaching Team Construction Plan (JXTD20160512 and JXTD20180510), Jinan campus of SDUST Excellent Teaching Team Construction Plan (JNJXTD201711), Teaching research project of Shandong University of Science and Technology (JNJG2017104), National Natural Science Foundation of China (61703243).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Haitao Pu.

Ethics declarations

Conflict of interest

There are no conflicts of interests of this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Zhao, Y., Huang, W. et al. Domain knowledge graph-based research progress of knowledge representation. Neural Comput & Applic (2020). https://doi.org/10.1007/s00521-020-05057-5

Download citation

Keywords

  • Domain knowledge graph
  • Knowledge representation
  • Entity
  • Relationship
  • Property