Real-time state-of-health monitoring of lithium-ion battery with anomaly detection, Levenberg–Marquardt algorithm, and multiphase exponential regression model


The state of health (SOH) of lithium-ion (Li+) battery prediction plays significant roles in battery management and the determination of the durability of the battery in service. This study used segmentation-type anomaly detection, the Levenberg–Marquardt (LM) algorithm, and multiphase exponential regression (MER) model to determine SOH of the Li+ batteries. By determining the changepoint boundaries using the characteristic values such as voltage transition rate (VTR), temperature transition rate (TTR), and charge capacities of the Li+ battery at the changepoint timestamps, we determined the parametric values of the biphasic MER. The characteristic transition rate values, which depend on the transition probabilities of the rolling standard deviations of the measured voltage and temperature, were later utilized with the matching charge capacities to model various training–testing dataset combinations. This helped to estimate the SOH of the battery at different life-cycle phases. This study also developed a technique for real-time estimation of the remaining useful life of the battery by using the MER model parameters, VTR, and TTR which were previously unseen parametric values of the Li+ battery. The result obtained from the proposed model indicates that our technique will be effective for online SOH estimation of Li+ batteries.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Goebel K, Saha B, Saxena A, Celaya JR, Christophersen JP (2008) Prognostics in battery health management. IEEE Instrum Meas Mag 11(4):1

    Article  Google Scholar 

  2. 2.

    Cai L, Meng J, Stroe DI, Luo G, Teodorescu R (2019) An evolutionary framework for lithium-ion battery state of health estimation. J Power Sources 412:615–622

    Article  Google Scholar 

  3. 3.

    Wang D, Miao Q, Pecht M (2013) Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model. J Power Sources 239:253–264

    Article  Google Scholar 

  4. 4.

    Wang X, Wei X, Dai H (2019) Estimation of state of health of lithium-ion batteries based on charge transfer resistance considering different temperature and state of charge. J Energy Storag 21:618–631

    Article  Google Scholar 

  5. 5.

    Wang Z, Zeng S, Guo J, Qin T (2019) State of health estimation of lithium-ion batteries based on the constant voltage charging curve. Energy 167:661–669

    Article  Google Scholar 

  6. 6.

    Xing Y, Ma EW, Tsui KL, Pecht M (2013) An ensemble model for predicting the remaining useful performance of lithium-ion batteries. Microelectron Reliab 53(6):811–820

    Article  Google Scholar 

  7. 7.

    Liu D, Pang J, Zhou J, Peng Y, Pecht M (2013) Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression. Microelectron Reliab 53(6):832–839

    Article  Google Scholar 

  8. 8.

    Li J, Zou L, Tian F, Dong X, Zou Z, Yang H (2016) Parameter identification of lithium-ion batteries model to predict discharge behaviors using heuristic algorithm. J Electrochem Soc 163(8):A1646–A1652

    Article  Google Scholar 

  9. 9.

    Berecibar M, Gandiaga I, Villarreal I, Omar N, Van Mierlo J, Van den Bossche P (2016) Critical review of state of health estimation methods of Li-ion batteries for real applications. Renew Sustain Energy Rev 56:572–587

    Article  Google Scholar 

  10. 10.

    Eddahech A, Briat O, Bertrand N, Deletage JY, Vinassa JM (2012) Behavior and state-of-health monitoring of Li-ion batteries using impedance spectroscopy and recurrent neural networks. Int J Electr Power Energy Syst 42(1):487–494

    Article  Google Scholar 

  11. 11.

    Nuhic A, Terzimehic T, Soczka-Guth T, Buchholz M, Dietmayer K (2013) Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods. J Power Sources 239:680–688

    Article  Google Scholar 

  12. 12.

    Klass V, Behm M, Lindbergh G (2014) A support vector machine-based state-of-health estimation method for lithium-ion batteries under electric vehicle operation. J Power Sources 270:262–272

    Article  Google Scholar 

  13. 13.

    Widodo A, Shim MC, Caesarendra W, Yang BS (2011) Intelligent prognostics for battery health monitoring based on sample entropy. Expert Syst Appl 38(9):11763–11769

    Article  Google Scholar 

  14. 14.

    Lin HT, Liang TJ, Chen SM (2012) Estimation of battery state of health using probabilistic neural network. IEEE Trans Industr Inf 9(2):679–685

    Article  Google Scholar 

  15. 15.

    Kim J, Lee S, Cho BH (2011) Complementary cooperation algorithm based on DEKF combined with pattern recognition for SOC/capacity estimation and SOH prediction. IEEE Trans Power Electron 27(1):436–451

    Article  Google Scholar 

  16. 16.

    Andre D, Nuhic A, Soczka-Guth T, Sauer DU (2013) Comparative study of a structured neural network and an extended Kalman filter for state of health determination of lithium-ion batteries in hybrid electric vehicles. Eng Appl Artif Intell 26(3):951–961

    Article  Google Scholar 

  17. 17.

    Remmlinger J, Buchholz M, Meiler M, Bernreuter P, Dietmayer K (2011) State-of-health monitoring of lithium-ion batteries in electric vehicles by on-board internal resistance estimation. J Power Sources 196(12):5357–5363

    Article  Google Scholar 

  18. 18.

    Feng X, Li J, Ouyang M, Lu L, Li J, He X (2013) Using probability density function to evaluate the state of health of lithium-ion batteries. J Power Sources 232:209–218

    Article  Google Scholar 

  19. 19.

    Ng SS, Xing Y, Tsui KL (2014) A naive Bayes model for robust remaining useful life prediction of lithium-ion battery. Appl Energy 118:114–123

    Article  Google Scholar 

  20. 20.

    Andre D, Appel C, Soczka-Guth T, Sauer DU (2013) Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries. J Power Sources 224:20–27

    Article  Google Scholar 

  21. 21.

    Samadi MF, Alavi SM, Saif M (2013) Online state and parameter estimation of the Li-ion battery in a Bayesian framework. In: 2013 American Control Conference, pp 4693–4698. IEEE

  22. 22.

    El Mehdi L, Anas EF, Zazi M, Jaouad K (2019) Parameter identification of a lithium-ion battery model using Levenberg–Marquardt algorithm. J Eng Appl Sci 14:1267–1273.

    Article  Google Scholar 

  23. 23.

    Yuan S, Wu H, Zhang X, Yin C (2013) Online estimation of electrochemical impedance spectra for lithium-ion batteries via discrete fractional order model. In: 2013 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, pp 1–6)

  24. 24.

    Novais S, Nascimento M, Grande L, Domingues MF, Antunes P, Alberto N, Leitão C, Oliveira R, Koch S, Kim GT, Passerini S (2016) Internal and external temperature monitoring of a Li-ion battery with fiber Bragg grating sensors. Sensors 16(9):1394

    Article  Google Scholar 

  25. 25.

    Nascimento M, Novais S, Leitão C, Domingues MF, Alberto N, Antunes P, Pinto JL (2015) Lithium batteries temperature and strain fiber monitoring. In: 24th International Conference on Optical Fibre Sensors. International Society for Optics and Photonics, vol 9634, p 96347V

  26. 26.

    Hu X, Li SE, Yang Y (2016) Advanced machine learning approach for lithium-ion battery state estimation in electric vehicles. IEEE Trans Transp Electrific 2(2):140–149

    Article  Google Scholar 

  27. 27.

    Leng F, Tan CM, Pecht M (2015) Effect of temperature on the aging rate of Li ion battery operating above room temperature. Sci Rep 5:12967

    Article  Google Scholar 

  28. 28.

    Bodenes L, Naturel R, Martinez H, Dedryvère R, Menetrier M, Croguennec L, Pérès JP, Tessier C, Fischer F (2013) Lithium secondary batteries working at very high temperature: capacity fade and understanding of aging mechanisms. J Power Sources 236:265–275

    Article  Google Scholar 

  29. 29.

    Wu Y, Keil P, Schuster SF, Jossen A (2017) Impact of temperature and discharge rate on the aging of a LiCoO2/LiNi0. 8Co0. 15Al0. 05O2 lithium-ion pouch cell. J Electrochem Soc 164(7):A1438–A1445

    Article  Google Scholar 

  30. 30.

    Waldmann T, Wilka M, Kasper M, Fleischhammer M, Wohlfahrt-Mehrens M (2014) Temperature dependent ageing mechanisms in Lithium-ion batteries—a post-mortem study. J Power Sources 262:129–135

    Article  Google Scholar 

  31. 31.

    Barai A, Widanage WD, McGordon A, Jennings P (2016) The influence of temperature and charge-discharge rate on open circuit voltage hysteresis of an LFP Li-ion battery. In: 2016 IEEE transportation electrification conference and expo (ITEC). IEEE, pp 1–4

  32. 32.

    Zhang SS (2012) Effect of discharge cutoff voltage on reversibility of lithium/sulfur batteries with LiNO3-contained electrolyte. J Electrochem Soc 159(7):A920–A923

    Article  Google Scholar 

  33. 33.

    Mathew M, Janhunen S, Rashid M, Long F, Fowler M (2018) Comparative analysis of lithium-ion battery resistance estimation techniques for battery management systems. Energies 11(6):1490

    Article  Google Scholar 

  34. 34.

    Truong C, Oudre L, Vayatis N (2018) ruptures: changepoint detection in Python. arXiv preprint arXiv:1801.00826

  35. 35.

    Fryzlewicz P (2007) Unbalanced Haar technique for nonparametric function estimation. J Am Stat Assoc 102(480):1318–1327

    MathSciNet  Article  Google Scholar 

  36. 36.

    Mo B, Yu J, Tang D, Liu H (2016) A remaining useful life prediction approach for lithium-ion batteries using Kalman filter and an improved particle filter. In: IEEE International conference on prognostics and health management (ICPHM), 2016. IEEE, pp 1–5

  37. 37.

    He W, Williard N, Osterman M, Pecht M (2011) Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method. J Power Sources 196(23):10314–10321

    Article  Google Scholar 

  38. 38.

    Davis PJ, Rabinowitz P (2007) Methods of numerical integration: courier dover publications. eBook ISBN: 9781483264288

  39. 39.

    Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Q Appl Math 2(2):164–168

    MathSciNet  Article  Google Scholar 

  40. 40.

    Marquardt D (1963) An algorithm for the least-squares estimation of nonlinear parameters. SIAM J Appl Math 11(2):431–441

    MathSciNet  Article  Google Scholar 

  41. 41.

    Ampazis N, Perantonis SJ (2000) Levenberg-Marquardt algorithm with adaptive momentum for the efficient training of feedforward networks. In: Proceedings of the IEEE-INNS-ENNS international joint conference on neural networks, 2000, vol 1. IJCNN 2000. IEEE, pp 126–131

  42. 42.

    Ahmadi M, Mojallali H (2011) Identification of multiple-input single-output Hammerstein models using Bezier curves and Bernstein polynomials. Appl Math Model 35(4):1969–1982

    MathSciNet  Article  Google Scholar 

  43. 43.

    Saha B, Goebel K (2007) Battery data set, NASA ames prognostics data repository. NASA Ames, Moffett Field, CA, USA. Accessed 27 Jan 2019

  44. 44.

    Miao Q, Xie L, Cui H, Liang W, Pecht M (2013) Remaining useful life prediction of lithium-ion battery with unscented particle filter technique. Microelectron Reliab 53(6):805–810

    Article  Google Scholar 

  45. 45.

    Liu D, Wang H, Peng Y, Xie W, Liao H (2013) Satellite lithium-ion battery remaining cycle life prediction with novel indirect health indicator extraction. Energies 6(8):3654–3668

    Article  Google Scholar 

  46. 46.

    Liu D, Luo Y, Liu J, Peng Y, Guo L, Pecht M (2014) Lithium-ion battery remaining useful life estimation based on fusion nonlinear degradation AR model and RPF algorithm. Neural Comput Appl 25(3–4):557–572

    Article  Google Scholar 

  47. 47.

    Charkhgard M, Farrokhi M (2010) State-of-charge estimation for lithium-ion batteries using neural networks and EKF. IEEE Trans Industr Electron 57(12):4178–4187

    Article  Google Scholar 

  48. 48.

    Chemali E, Kollmeyer PJ, Preindl M, Emadi A (2018) State-of-charge estimation of Li-ion batteries using deep neural networks: a machine learning approach. J Power Sources 400:242–255

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Chinedu I. Ossai.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ossai, C.I., Egwutuoha, I.P. Real-time state-of-health monitoring of lithium-ion battery with anomaly detection, Levenberg–Marquardt algorithm, and multiphase exponential regression model. Neural Comput & Applic 33, 1193–1206 (2021).

Download citation


  • Anomaly detection
  • Lithium-ion battery
  • Levenberg–Marquardt algorithm
  • Multiphase exponential regression
  • State of health
  • Voltage
  • Temperature