Identification of drug–target interactions via fuzzy bipartite local model


With the emergence of large-scale experimental data on genes and proteins, drug discovery and repositioning will be more difficult in the field of biomedical research. More and more resources are needed for detecting drug–target interactions (DTIs) in the experimental works. The interactions between drugs and targets could been seen as a bipartite network. Many computational methods have been developed to identify DTIs. However, most of them did not integrate multiple information and filter noise or outlier points. In this paper, we develop a fuzzy bipartite local model (FBLM) based on fuzzy least squares support vector machine and multiple kernel learning (MKL) for predicting DTIs. First, multiple kernels are constructed in drug and target spaces, respectively. Then, all corresponding kernels are combined by MKL algorithm in two spaces. Finally, FBLM is employed to identify DTIs. Our proposed approach is tested on four benchmark datasets under three types of cross validation. Comparing with existing outstanding methods, our method is a useful tool for the DTIs prediction.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Hecker N, Ahmed J, Von Eichborn J et al (2012) SuperTarget goes quantitative: update on drug–target interactions. Nucleic Acids Res 40(D1):1113–1117

    Google Scholar 

  2. 2.

    Schomburg I, Chang A, Placzek S et al (2013) Brenda in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in brenda. Nucleic Acids Res 41(D1):764–772

    Google Scholar 

  3. 3.

    Kanehisa M, Goto S, Hattori M et al (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34(Suppl 1):354–357

    Google Scholar 

  4. 4.

    Law V, Knox C, Djoumbou Y et al (2014) DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res 42(D1):1091–1097

    Google Scholar 

  5. 5.

    Chen X, Liu MX, Yan GY (2012) Drug–target interaction prediction by random walk on the heterogeneous network. Mol BioSyst 8(7):1970–1978

    Google Scholar 

  6. 6.

    Feixiong C, Chuang L, Jing J et al (2012) Prediction of drug–target interactions and drug repositioning via network-based inference. PLoS Comput Biol 8(5):e1002503

    Google Scholar 

  7. 7.

    Lin C, Chen W, Qiu C et al (2014) LibD3C: ensemble classifiers with a clustering and dynamic selection strategy. Neurocomputing 123:424–435

    Google Scholar 

  8. 8.

    Ding YJ, Tang JJ, Guo F (2017) Identification of drug–target interactions via multiple information integration. Inf Sci 418:546–560

    Google Scholar 

  9. 9.

    Ding YJ, Tang JJ, Guo F (2019) Identification of drug-side effect association via multiple information integration with centered kernel alignment. Neurocomputing 325:211–224

    Google Scholar 

  10. 10.

    Qu W, Yang B, Jiang W et al (2012) HYBP-PSSP: a hybrid back propagation method for predicting protein secondary structure. Neural Comput Appl 21(2):337–349

    Google Scholar 

  11. 11.

    Dongardive J, Abraham S (2017) Reaching optimized parameter set: protein secondary structure prediction using neural network. Neural Comput Appl 28(8):1947–1974

    Google Scholar 

  12. 12.

    Wang YC, Zhang CH, Deng NY et al (2011) Research article: kernel-based data fusion improves the drug–protein interaction prediction. Comput Biol Chem 35(6):353–362

    MathSciNet  Google Scholar 

  13. 13.

    Peng LH, Liao B, Zhu W, Li ZJ, Li KQ (2015) Predicting drug–target interactions with multi-information fusion. IEEE J Biomed Health Inf 21(2):561–572

    Google Scholar 

  14. 14.

    Bleakley K, Yamanishi Y (2009) Supervised prediction of drug–target interactions using bipartite local models. Bioinformatics 25(18):2397–2403

    Google Scholar 

  15. 15.

    Mei JP, Kwoh CK, Yang P et al (2013) Drug–target interaction prediction by learning from local information and neighbors. Bioinformatics 29(2):238–245

    Google Scholar 

  16. 16.

    Xia Z, Wu LY, Zhou X et al (2010) Semi-supervised drug–protein interaction prediction from heterogeneous biological spaces. BMC Syst Biol 4(Suppl 2):6–17

    Google Scholar 

  17. 17.

    Van LT, Marchiori E (2013) Predicting drug–target interactions for new drug compounds using a weighted nearest neighbor profile. PLoS ONE 8(6):e66952(1)–e66952(6)

    Google Scholar 

  18. 18.

    Van LT, Nabuurs SB, Marchiori E (2011) Gaussian interaction profile kernels for predicting drug–target interaction. Bioinformatics 27(21):3036–3043

    Google Scholar 

  19. 19.

    Cichonska A, Ravikumar B, Parri E et al (2017) Computational–experimental approach to drug–target interaction mapping: a case study on kinase inhibitors. Plos Comput Biol 13(8):e1005678

    Google Scholar 

  20. 20.

    Hao M, Wang Y, Bryant SH (2016) Improved prediction of drug–target interactions using regularized least squares integrating with kernel fusion technique. Anal Chim Acta 909:41–50

    Google Scholar 

  21. 21.

    Nascimento ACA, Prudêncio RBC, Costa IG (2016) A multiple kernel learning algorithm for drug–target interaction prediction. BMC Bioinform 17(1):46

    Google Scholar 

  22. 22.

    Zhang W, Chen Y, Li D (2017) Drug–target interaction prediction through label propagation with linear neighborhood information. Molecules 22(12):2056–2069

    Google Scholar 

  23. 23.

    Zheng X, Ding H, Mamitsuka H et al (2013) Collaborative matrix factorization with multiple similarities for predicting drug-target interactions. In: ACM SIGKDD international conference on knowledge discovery and data mining, pp 1025–1033

  24. 24.

    Gönen M (2012) Predicting drug–target interactions from chemical and genomic kernels using Bayesian matrix factorization. Bioinformatics 28(18):2304–2310

    Google Scholar 

  25. 25.

    Liu Y, Wu M, Miao C et al (2016) Neighborhood regularized logistic matrix factorization for drug–target interaction prediction. Plos Comput Biol 12(2):e1004760

    Google Scholar 

  26. 26.

    Ezzat A, Zhao P, Wu M et al (2016) Drug–target interaction prediction with graph regularized matrix factorization. IEEE-ACM Trans Comput Biol Bioinform 14(3):646–656

    Google Scholar 

  27. 27.

    Bolgar B, Antal P (2017) VB-MK-LMF: fusion of drugs, targets and interactions using variational Bayesian multiple kernel logistic matrix factorization. BMC Bioinform 18(1):440–457

    Google Scholar 

  28. 28.

    Luo Y, Zhao X, Zhou J et al (2017) A network integration approach for drug–target interaction prediction and computational drug repositioning from heterogeneous information. Nat Commun.

    Article  Google Scholar 

  29. 29.

    Mousavian Z, Khakabimamaghani S, Kavousi K et al (2015) Drug–target interaction prediction from PSSM based evolutionary information. J Pharmacol Toxicol Methods 78:42–51

    Google Scholar 

  30. 30.

    Cao DS, Liu S, Xu QS et al (2012) Large-scale prediction of drug–target interactions using protein sequences and drug topological structures. Anal Chim Acta 752(21):1–10

    Google Scholar 

  31. 31.

    Cao DS, Zhang LX, Tan GS et al (2014) Computational prediction of drug target interactions using chemical, biological, and network features. Mol Inform 33(10):669–681

    Google Scholar 

  32. 32.

    Li Z, Han P, You Z et al (2017) In silico prediction of drug–target interaction networks based on drug chemical structure and protein sequences. Sci Rep 7(1):11174

    Google Scholar 

  33. 33.

    Gui J, Liu T, Tao D et al (2017) Representative vector machines: a unified framework for classical classifiers. IEEE Trans Cybern 46(8):1877–1888

    Google Scholar 

  34. 34.

    Kurgan L, Wang C (2018) Survey of similarity-based prediction of drug–protein interactions. Curr Med Chem.

    Article  Google Scholar 

  35. 35.

    Zhou L, Li Z, Yang J et al (2019) Revealing drug–target interactions with computational models and algorithms. Molecules 24(9):1714

    Google Scholar 

  36. 36.

    Ezzat A, Wu M, Li X et al (2019) Computational prediction of drug–target interactions via ensemble learning. Methods Mol Biol.

    Article  Google Scholar 

  37. 37.

    Lee I, Keum J, Nam H (2019) DeepConv-DTI: prediction of drug–target interactions via deep learning with convolution on protein sequences. PLoS Comput Biol.

    Article  Google Scholar 

  38. 38.

    Hattori M, Okuno Y, Goto S et al (2003) Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways. J Am Chem Soc 125(39):11853–11865

    Google Scholar 

  39. 39.

    Takarabe M, Kotera M, Nishimura Y et al (2012) Drug target prediction using adverse event report systems. Bioinformatics 28(18):i611–i618

    Google Scholar 

  40. 40.

    Yamanishi Y, Araki M, Gutteridge A et al (2008) Prediction of drug–target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24(13):i232–i240

    Google Scholar 

  41. 41.

    Smedley D, Haider S, Durinck S et al (2015) The BioMart community portal: an innovative alternative to large, centralized data repositories. Nucleic Acids Res 43(1):589–598

    Google Scholar 

  42. 42.

    Ovaska K, Laakso M, Hautaniemi S (2008) Fast gene ontology based clustering for microarray experiments. Biodata Min 1(1):11–11

    Google Scholar 

  43. 43.

    Perlman L, Gottlieb A, Atias N et al (2011) Combining drug and gene similarity measures for drug–target elucidation. J Comput Biol A J Comput Mol Cell Biol 18(2):133

    Google Scholar 

  44. 44.

    He J, Chang SF, Xie L (2008) Fast kernel learning for spatial pyramid matching. In: IEEE conference on computer vision and pattern recognition

  45. 45.

    Tsujinishi D, Abe S (2003) Fuzzy least squares support vector machines for multiclass problems. Neural Netw 16(5–6):785–792

    Google Scholar 

  46. 46.

    Tsujinishi D, Abe S (2003) Fuzzy least squares support vector machines. Proc 2003 Int Jt Conf Neural Netw 2:1599–1604

    Google Scholar 

  47. 47.

    Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300

    Google Scholar 

  48. 48.

    Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    MATH  Google Scholar 

  49. 49.

    Lin CF, Wang SD (2002) Fuzzy support vector machines. IEEE Trans Neural Netw 13(2):464–471

    Google Scholar 

  50. 50.

    Gaulton A, Bellis LJ, Bento AP et al (2012) Chembl: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40(DI):D1100–D1107

    Google Scholar 

  51. 51.

    Günther S, Kuhn M, Dunkel M et al (2008) SuperTarget and matador: resources for exploring drug–target relationships. Nucleic Acids Res 36:919–922

    Google Scholar 

Download references


This work is supported by a grant from the National Science Foundation of China (NSFC 61772362 and 61902271), Natural Science Research Project of Jiangsu Higher Eduction Institutions of China (19KJB520014) and the Tianjin Research Program of Application Foundation and Advanced Technology (16JCQNJC00200). The authors also thank Dr. Yamanishi Y., Liu Y. and Nascimento A.C.A. for kindly providing datasets on their websites.

Author information



Corresponding author

Correspondence to Fei Guo.

Ethics declarations

Availability of data and material

The source code, datasets and corresponding results are available at

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Tang, J. & Guo, F. Identification of drug–target interactions via fuzzy bipartite local model. Neural Comput & Applic 32, 10303–10319 (2020).

Download citation


  • Drug–target interactions
  • Bipartite network
  • Multiple kernel learning
  • Fuzzy least squares support vector machines