Consensus-based aggregation for identification and ranking of top-k influential nodes

Abstract

Technology has continuously been a crucially influenced and acutely tangled with the progress of society. Online Social Networks (OSN) are interesting and valuable datasets that can be leveraged to improve understanding about society and to know inter-personal choices. Identification and Ranking of Influential Nodes (IRIN) is non-trivial task for real time OSN like Twitter which accustom with ever-changing network, demographics and contents having heterogeneous features such as Tweets, Likes, Mentions and Retweets. Existing techniques such as Centrality Measures and Influence Maximization ignores vital information available on OSN, which are inappropriate for IRIN. Most of these approaches have high computational complexity i.e. \(O(n^{3} )\). This research aims to put forward holistic approach using Heterogeneous Surface Learning Features (HSLF) for IRIN on specific topic and proposes two approaches: Average Consensus Ranking Aggregation and Weighted Average Consensus Ranking Aggregation using HSLF. The effectiveness and efficiency of the proposed approaches are tested and analysed using real world data fetched from Twitter for two topics, Politics and Economy and achieved superior results compared to existing approaches. The empirical analysis validate that the proposed approach is highly scalable with low computational complexity and applicable for large datasets.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

References

  1. 1.

    Aggarwal CC (2011) An introduction to social network data analytics. In: Aggarwal C (ed) Social network data analytics. Springer, Boston, pp 1–15

    MATH  Chapter  Google Scholar 

  2. 2.

    Cha M, Haddadi H, Benevenuto F, Gummadi PK (2010) Measuring user influence in twitter: the million follower fallacy. Icwsm 10(10–17):30

    Google Scholar 

  3. 3.

    Bello-Orgaz G, Jung JJ, Camacho D (2016) Social big data: recent achievements and new challenges. Inf Fusion 28:45–59

    Article  Google Scholar 

  4. 4.

    Sapountzi A, Psannis KE (2016) Social networking data analysis tools & challenges. Future Gener Comput Syst 86:893–913

    Article  Google Scholar 

  5. 5.

    Serrat O (2017) Social network analysis. In: Serrat O (ed) Knowledge solutions. Springer, Singapore, pp 39–43

    Chapter  Google Scholar 

  6. 6.

    Oro E, Pizzuti C, Procopio N, Ruffolo M (2018) Detecting topic authoritative social media users: a multilayer network approach. IEEE Trans Multimed 20(5):1195–1208

    Article  Google Scholar 

  7. 7.

    Alp ZZ, Öğüdücü ŞG (2018) Identifying topical influencers on twitter based on user behavior and network topology. Knowl-Based Syst 141:211–221

    Article  Google Scholar 

  8. 8.

    De Domenico M, Solé-Ribalta A, Omodei E, Gómez S, Arenas A (2015) Ranking in interconnected multilayer networks reveals versatile nodes. Nat Commun 6:6868

    Article  Google Scholar 

  9. 9.

    Wang Z, Du C, Fan J, Xing Y (2017) Ranking influential nodes in social networks based on node position and neighborhood. Neurocomputing 260:466–477

    Article  Google Scholar 

  10. 10.

    Al-Garadi MA, Varathan KD, Ravana SD, Ahmed E, Mujtaba G, Khan MUS, Khan SU (2018) Analysis of online social network connections for identification of influential users: survey and open research issues. ACM Comput Surv (CSUR) 51(1):16

    Article  Google Scholar 

  11. 11.

    Riquelme F, González-Cantergiani P (2016) Measuring user influence on Twitter: a survey. Inf Process Manage 52(5):949–975

    Article  Google Scholar 

  12. 12.

    Subbian K, Melville P (2011) Supervised rank aggregation for predicting influencers in twitter. In: 2011 IEEE third international conference on privacy, security, risk and trust (PASSAT) and 2011 IEEE third international conference on social computing (SocialCom). IEEE, pp 661–665

  13. 13.

    Wang S, Zhao J (2015) Multi-attribute integrated measurement of node importance in complex networks. Chaos Interdiscip J Nonlinear Sci 25(11):113105

    MathSciNet  Article  Google Scholar 

  14. 14.

    Zareie A, Sheikhahmadi A, Jalili M (2019) Identification of influential users in social networks based on users’ interest. Inf Sci 493:217–231

    MathSciNet  Article  Google Scholar 

  15. 15.

    Chen Z, Liu Y, Zhu W (2016) Ranking node influence in social networks. In: 2016 15th international symposium on parallel and distributed computing (ISPDC). IEEE, pp 277–284

  16. 16.

    Sheikhahmadi A, Nematbakhsh MA, Zareie A (2017) Identification of influential users by neighbors in online social networks. Phys A 486:517–534

    Article  Google Scholar 

  17. 17.

    Borgatti SP (2005) Centrality and network flow. Soc Netw 27(1):55–71

    MathSciNet  Article  Google Scholar 

  18. 18.

    Newman ME (2005) A measure of betweenness centrality based on random walks. Soc Netw 27(1):39–54

    Article  Google Scholar 

  19. 19.

    Liu Y, Wei B, Du Y, Xiao F, Deng Y (2016) Identifying influential spreaders by weight degree centrality in complex networks. Chaos, Solitons Fractals 86:1–7

    MathSciNet  MATH  Article  Google Scholar 

  20. 20.

    Yang L, Qiao Y, Liu Z, Ma J, Li X (2018) Identifying opinion leader nodes in online social networks with a new closeness evaluation algorithm. Soft Comput 22(2):453–464

    Article  Google Scholar 

  21. 21.

    Zareie A, Sheikhahmadi A, Fatemi A (2017) Influential nodes ranking in complex networks: an entropy-based approach. Chaos, Solitons Fractals 104:485–494

    MATH  Article  Google Scholar 

  22. 22.

    Brin S, Page L (1998) The anatomy of a large-scale hypertextual web search engine. Comput Netw ISDN Syst 30(1–7):107–117

    Article  Google Scholar 

  23. 23.

    Zhang Y, Ma J, Wang Z, Chen B, Yu Y (2018) Collective topical PageRank: a model to evaluate the topic-dependent academic impact of scientific papers. Scientometrics 114(3):1345–1372

    Article  Google Scholar 

  24. 24.

    Chai W, Xu W, Zuo M, Wen X (2013) ACQR: a novel framework to identify and predict influential users in micro-blogging. In: Pacis, p 20

  25. 25.

    Liu N, Li L, Xu G, Yang Z (2014) Identifying domain-dependent influential microblog users: a post-feature based approach. In: AAAI, pp 3122–3123

  26. 26.

    Mei Y, Zhong Y, Yang J (2015) Finding and analyzing principal features for measuring user influence on Twitter. In: 2015 IEEE first international conference on big data computing service and applications (BigDataService). IEEE, pp 478–486

  27. 27.

    Gao C, Zhong L, Li X, Zhang Z, Shi N (2015) Combination methods for identifying influential nodes in networks. Int J Mod Phys C 26(06):1550067

    MathSciNet  Article  Google Scholar 

  28. 28.

    Zareie A, Sheikhahmadi A (2018) A hierarchical approach for influential node ranking in complex social networks. Expert Syst Appl 93:200–211

    Article  Google Scholar 

  29. 29.

    Mardani A, Jusoh A, Zavadskas EK (2015) Fuzzy multiple criteria decision-making techniques and applications—two decades review from 1994 to 2014. Expert Syst Appl 42(8):4126–4148

    Article  Google Scholar 

  30. 30.

    Du Y, Gao C, Hu Y, Mahadevan S, Deng Y (2014) A new method of identifying influential nodes in complex networks based on TOPSIS. Phys A 399:57–69

    Article  Google Scholar 

  31. 31.

    Gandhi M, Muruganantham A (2015) Potential influencers identification using multi-criteria decision making (MCDM) methods. Procedia Comput Sci 57:1179–1188

    Article  Google Scholar 

  32. 32.

    Hung YH, Huang TL, Hsieh JC, Tsuei HJ, Cheng CC, Tzeng GH (2012) Online reputation management for improving marketing by using a hybrid MCDM model. Knowl-Based Syst 35:87–93

    Article  Google Scholar 

  33. 33.

    Li YM, Shiu YL (2012) A diffusion mechanism for social advertising over microblogs. Decis Support Syst 54(1):9–22

    Article  Google Scholar 

  34. 34.

    Urena R, Chiclana F, Melancon G, Herrera-Viedma E (2019) A social network based approach for consensus achievement in multiperson decision making. Inf Fusion 47:72–87

    Article  Google Scholar 

  35. 35.

    Sun Q, Wang N, Zhou Y, Luo Z (2016) Identification of influential online social network users based on multi-features. Int J Pattern Recognit Artif Intell 30(06):1659015

    Article  Google Scholar 

  36. 36.

    Basu S, Maulik U, Chatterjee O (2016) Stability of consensus node orderings under imperfect network data. IEEE Trans Comput Soc Syst 3(3):120–131

    Article  Google Scholar 

  37. 37.

    Zahid MA, De Swart H (2015) The borda majority count. Inf Sci 295:429–440

    MathSciNet  MATH  Article  Google Scholar 

  38. 38.

    Xiao F, Noro T, Tokuda T (2014) Finding news-topic oriented influential Twitter users based on topic related hashtag community detection. J. Web Eng. 13(5&6):405–429

    Google Scholar 

  39. 39.

    Tidke B, Mehta R, Dhanani J (2018) SIRIF: supervised influence ranking based on influential network. J Intell Fuzzy Syst 35:1225–1237

    Article  Google Scholar 

  40. 40.

    Tidke B, Mehta R, Dhanani J (2019) Multimodal ensemble approach to identify and rank top-k influential nodes of scholarly literature using Twitter network. J Inf Sci. https://doi.org/10.1177/0165551519837190

    Article  Google Scholar 

  41. 41.

    Ailon N (2010) Aggregation of partial rankings, p-ratings and top-m lists. Algorithmica 57:284. https://doi.org/10.1007/s00453-008-9211-1

    MathSciNet  MATH  Article  Google Scholar 

  42. 42.

    Korba A, Clemencon S, Sibony E (2017) A learning theory of ranking aggregation. In: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, in PMLR, vol 54, pp 1001–1010

  43. 43.

    Online 1: https://www.retweetrank.com/. Accessed 10 Nov 2018

  44. 44.

    Online 2: https://www.rightrelevance.com/search/influencers?query=indian%20politics&instance_type=person. Accessed 14 Nov 2018

  45. 45.

    Al-Garadi MA, Varathan KD, Ravana SD, Ahmed E, Chang V (2016) Identifying the influential spreaders in multilayer interactions of online social networks. J Intell Fuzzy Syst 31(5):2721–2735

    Article  Google Scholar 

  46. 46.

    Singh SS, Kumar A, Singh K, Biswas B (2019) C2IM: community based context-aware influence maximization in social networks. Physica A 514:796–818

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bharat Tidke.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 8 and 9.

Table 8 Identified and ranked influential nodes for various approaches for politics data
Table 9 Identified and ranked influential nodes for various approaches for economy data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tidke, B., Mehta, R. & Dhanani, J. Consensus-based aggregation for identification and ranking of top-k influential nodes. Neural Comput & Applic 32, 10275–10301 (2020). https://doi.org/10.1007/s00521-019-04568-0

Download citation

Keywords

  • Social network
  • Influence analysis
  • Centrality measures
  • Surface Learning