Spherical search optimizer: a simple yet efficient meta-heuristic approach

Abstract

In these years, more meta-heuristic approaches have been proposed inspired by nature. However, the search mode has not been researched deeply. In this paper, we find that search style and individual selection mechanism for interaction are the core problems for a meta-heuristic algorithm. In particular, we focus on search style and have studied the principle of basic hypercube search style and basic reduced hypercube search style. Inspired by them, we propose a spherical search style. Furthermore, we design a spherical search optimizer by the spherical search style and tournament selection method. And then, theoretical analysis of it is provided. To validate the performance of the proposed method, we compare our approach against nine state-of-the-art algorithms. The CEC2013, CEC2014, CEC2015 and CEC2017 suites and the data clustering optimization problem in the real world are used. Experimental results and analysis verify that it is a simple yet efficient method to solve continuous optimization problems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Rizk-Allah RM, Hassanien AE, Elhoseny M, Gunasekaran M (2019) A new binary salp swarm algorithm: development and application for optimization tasks. Neural Comput Appl 31:1641–1663

    Article  Google Scholar 

  2. 2.

    Boveiri HR, Elhoseny M (2019) A-COA: an adaptive cuckoo optimization algorithm for continuous and combinatorial optimization. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3928-9

    Article  Google Scholar 

  3. 3.

    Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceeding IEEE international conference neural network, Perth, Western Australia, pp 1942–1948

  4. 4.

    Dorigo M, Birattari M, Stützle T, Libre U, Bruxelles D, Roosevelt AFD (2006) Ant colony optimization -artificial ants as a computational intelligence technique. IEEE Comput Intell Mag 1:28–39

    Article  Google Scholar 

  5. 5.

    Dorigo M, Maniezzo V, Colorni A (1996) The ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Part B 26:29–41

    Article  Google Scholar 

  6. 6.

    Dorigo M, Blum C (2005) Ant colony optimization theory: a survey. Theoret Comput Sci 344(2):243–278

    MathSciNet  MATH  Article  Google Scholar 

  7. 7.

    Eusuff MM, Lansey KE (2003) Optimization of water distribution network design using the shuffled frog leaping algorithm. J Water Resour Plan Manag 129(3):210–225

    Article  Google Scholar 

  8. 8.

    Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report-tr06, vol 200. Erciyes University, Engineering Faculty, Computer Engineering Department, pp 1–10

  9. 9.

    Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: Proceeings of world congress on nature and biologically inspired computing. IEEE Publications, USA, pp 210–214

  10. 10.

    Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12:702–713

    Article  Google Scholar 

  11. 11.

    Rao RV, Savsani VJ, Vakharia DP (2012) Teaching-learning-based optimization: an optimization method for continuous non-linear large scale problems. Inf Sci 183:1–15

    MathSciNet  Article  Google Scholar 

  12. 12.

    Grefenstette JJ (1986) Optimization of control parameters for genetic algorithms. IEEE Trans Syst Man Cybern 16(1):122–128

    Article  Google Scholar 

  13. 13.

    Rechenberg I (1973) Evolution strategies: optimierung technischer systeme nach prinzipien der biologischen evolution. Frommann-Holzboog, Stuttgart

    Google Scholar 

  14. 14.

    Yao X, Liu Y (1996) Fast evolutionary programming. Evolut Program 3:451–460

    Google Scholar 

  15. 15.

    Storn RM, Price KV (1997) Differential evolution -a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11:341–359

    MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    Brest J, Greiner S, Boskovic B, Mernik M, Zumer V (2006) Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evolut Comput 10(6):646–657

    Article  Google Scholar 

  17. 17.

    Qin AK, Suganthan PN (2005) Self-adaptive differential evolution algorithm for numerical optimization. In: Proceedings of IEEE congress on evolutionary computation, vol 2. pp 1785–179

  18. 18.

    Zhang J, Sanderson AC (2009) JADE: adaptive differential evolution with optional external archive. IEEE Trans Evolut Comput 13(5):945–958

    Article  Google Scholar 

  19. 19.

    Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248

    MATH  Article  Google Scholar 

  20. 20.

    Erol OK, Eksin I (2006) A new optimization method: big bang–big crunch. Adv Eng Softw 37:106–111

    Article  Google Scholar 

  21. 21.

    Kaveh A, Khayatazad M (2012) A new meta-heuristic method: ray optimization. Comput Struct 112:283–294

    Article  Google Scholar 

  22. 22.

    Du H, Wu X, Zhuang J (2006) Small-world optimization algorithm for function optimization. In: International conference on natural computation. Springer, Berlin, Heidelberg, pp 264–273

    Chapter  Google Scholar 

  23. 23.

    Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133

    Article  Google Scholar 

  24. 24.

    Wu G (2016) Across neighborhood search for numerical optimization. Inf Sci 329:597–618

    Article  Google Scholar 

  25. 25.

    Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  26. 26.

    Kaveh A, Dadras A (2017) A novel meta-heuristic optimization algorithm: thermal exchange optimization. Adv Eng Softw 110:69–84

    Article  Google Scholar 

  27. 27.

    Hatamlou A (2013) Black hole: a new heuristic optimization approach for data clustering. Inf Sci 222:175–184

    MathSciNet  Article  Google Scholar 

  28. 28.

    Uymaz SA, Tezel G, Yel E (2015) Artificial algae algorithm (AAA) for nonlinear global optimization. Appl Soft Comput 31:153–171

    Article  Google Scholar 

  29. 29.

    Nematollahi F, Rahiminejad A, Vahidi B (2017) A novel physical based meta-heuristic optimization method known as lightning attachment procedure optimization. Appl Soft Comput 59:596–621

    Article  Google Scholar 

  30. 30.

    Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98

    Article  Google Scholar 

  31. 31.

    Ghaemi M, Feizi-Derakhshi M-R (2014) Forest optimization algorithm. Expert Syst Appl 41:6676–6687

    Article  Google Scholar 

  32. 32.

    Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  33. 33.

    Dhiman G, Kumar V (2017) Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Adv Eng Softw 114:48–70

    Article  Google Scholar 

  34. 34.

    Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47

    Article  Google Scholar 

  35. 35.

    Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Article  Google Scholar 

  36. 36.

    Tang D, Dong S, Jiang Y, Li H, Huang Y (2015) ITGO: invasive tumor growth optimization algorithm. Appl Soft Comput 36:670–698

    Article  Google Scholar 

  37. 37.

    Gao Y, Zhang G, Lu J, Wee HM (2011) Particle swarm optimization for bi-level pricing problems in supply chains. J Glob Optim 51:245–254

    MathSciNet  MATH  Article  Google Scholar 

  38. 38.

    Zhan ZH, Zhang J, Li Y, Chung HSH (2009) Adaptive particle swarm optimization. IEEE Trans Syst Man Cybern Part B (Cybern) 39(6):1362–1381

    Article  Google Scholar 

  39. 39.

    Wang GG, Gandomi AH, Yang XS (2014) A novel improved accelerated particle swarm optimization algorithm for global numerical optimization. Eng Comput 31(7):1198–1220

    Article  Google Scholar 

  40. 40.

    Tang D (2019) Spherical evolution for solving continuous optimization problems. Appl Soft Comput. https://doi.org/10.1016/j.asoc.2019.105499

    Article  Google Scholar 

  41. 41.

    Hu ZB, Xiong SW, Su QH, Fang ZX (2014) Finite Markov chain analysis of classical differential evolution algorithm. J Comput Appl Math 268:121–134

    MathSciNet  MATH  Article  Google Scholar 

  42. 42.

    Zhang H, Cao X, Ho JK, Chow TW (2016) Object-level video advertising: an optimization framework. IEEE Trans Ind Inf 13(2):520–531

    Article  Google Scholar 

  43. 43.

    Milner S, Davis C, Zhang H, Llorca J (2012) Nature-inspired self-organization, control, and optimization in heterogeneous wireless networks. IEEE Trans Mob Comput 11(7):1207–1222

    Article  Google Scholar 

  44. 44.

    Liang JJ, Qu BY, Suganthan PN, Hernández-Díaz AG (2013) Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore, Technical Report 201212(34), pp 281–295

  45. 45.

    Liang JJ, Qu BY, Suganthan PN (2013) Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore, 635

  46. 46.

    Liang JJ, Qu BY, Suganthan PN, Chen Q (2014) Problem definitions and evaluation criteria for the CEC 2015 competition on learning-based real-parameter single objective optimization. Technical Report 201411A, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore, vol 29, pp 625–640

  47. 47.

    Awad NH, Ali MZ, Liang JJ, Qu BY, Suganthan PN (2017) Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization. Nanyang Technological University, Singapore, Jordan University of Science and Technology, Jordan and Zhengzhou University, Zhengzhou China, Technical Report 2017

  48. 48.

    Civicioglu P (2013) Backtracking search optimization algorithm for numerical optimization problems. Appl Math Comput 219:8121–8144

    MathSciNet  MATH  Google Scholar 

  49. 49.

    Civicioglu P (2013) Artificial cooperative search algorithm for numerical optimization problems. Inf Sci 229:58–76

    MATH  Article  Google Scholar 

  50. 50.

    Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evolut Comput 1:3–18

    Article  Google Scholar 

  51. 51.

    Das S, Abraham A, Konar A (2009) Automatic hard clustering using improved differential evolution algorithm. In: Metaheuristic clustering. Springer, Berlin, Heidelberg, pp 137–174

    MATH  Chapter  Google Scholar 

  52. 52.

    Fathian M, Amiri B, Maroosi A (2007) Application of honey-bee mating optimization algorithm on clustering. Appl Math Comput 190:1502–1513

    MathSciNet  MATH  Google Scholar 

  53. 53.

    Hatamlou A, Abdullah S, Nezamabadi-Pour H (2011) Application of gravitational search algorithm on data clustering. In: International conference on rough sets and knowledge technology. Springer, Berlin, Heidelberg, pp 337–346

    Chapter  Google Scholar 

  54. 54.

    Hatamlou A, Abdullah S, Nezamabadi-pour H (2012) A combined approach for clustering based on K-means and gravitational search algorithms. Swarm Evolut Comput 6:47–52

    Article  Google Scholar 

  55. 55.

    Hatamlou A, Abdullah S, Hatamlou M (2011) Data clustering using big bang–big crunch algorithm. In: International conference on innovative computing technology. Springer, Berlin, Heidelberg, pp 383–388

    Chapter  Google Scholar 

  56. 56.

    Satapathy SC, Naik A (2011) Data clustering based on teaching-learning-based optimization. In: International conference on swarm, evolutionary, and memetic computing. Springer, Berlin, Heidelberg, pp 148–156

    Chapter  Google Scholar 

  57. 57.

    Blake CL, Merz CJ (1998) UCI repository of machine learning databases. University of California, Irvine, Department of Information and Computer Sciences. http://www.ics.uci.edu/mlearn/MLRepository.html

Download references

Acknowledgements

This work is supported by the Guang Dong Provincial Natural Fund Project (2016A030310300); the National Natural Science Foundation of China (71871069, 71401045, 61976239); the Ministry of Education in China Project of Humanities and Social Sciences (18YJAZH137); the Guangdong Provincial Natural Fund Project (2017A030313394); the major scientific research projects of Guangdong (2017WTSCX021); the planning project of the 13th Five-Year in Philosophy and Social Sciences of Guangzhou (2018GZGJ48); the Ministry of Education Science and Technology Development Center (2017A11001); and the Guangdong University Engineering Technology Research Center (2016GCZX004). This research was funded by the Guangdong Natural Science Foundation (Grant No. 2015A030308017) and the Guangdong Science and Technology Key Project (Grant No. 2015B010131009).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Deyu Tang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Tang, D., Liu, Z. et al. Spherical search optimizer: a simple yet efficient meta-heuristic approach. Neural Comput & Applic 32, 9777–9808 (2020). https://doi.org/10.1007/s00521-019-04510-4

Download citation

Keywords

  • Meta-heuristic approach
  • Hypercube search style
  • Spherical search style
  • Data clustering