Hybrid sine cosine artificial bee colony algorithm for global optimization and image segmentation

Abstract

Artificial bee colony (ABC) algorithm is an efficient biological-inspired optimization method, which mimics the foraging behavior of honey bees to solve the complex and nonlinear optimization problems. However, in some cases, it suffers from inefficient exploration, low exploitation and slow convergence rate. These shortcomings cause the problem of stagnation at local optimum which is dangerous in determining the true solution (optima) of the problem. Therefore, in the present paper, an attempt has been made toward the removal of the drawbacks from the classical ABC by proposing a novel hybrid method called SCABC algorithm. The SCABC algorithm hybridizes the ABC with sine cosine algorithm (SCA) to upgrade the level of exploitation and exploration in the classical ABC algorithm. The SCA is a recently introduced algorithm, which uses the trigonometric functions sine and cosine to perform the search. The validation of the SCABC algorithm is performed on a well-known benchmark set of 23 optimization problems. The various analysis metrics such as statistical, convergence and performance index analysis verify the better search ability of the SCABC as compared to classical ABC, SCA. The comparison with some other optimization algorithms demonstrates a comparatively better state of exploitation and exploration in the SCABC algorithm. Moreover, the SCABC is also employed on multilevel thresholding problems. The various performance measures demonstrate the efficacy of the SCABC algorithm in determining the optimal thresholds of gray images.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Article  Google Scholar 

  2. 2.

    Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the 6th international symposium on micro machine and human science, 1995. MHS’95. IEEE, pp 39–43

  3. 3.

    Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. Comput Intell Mag IEEE 1:28–39

    Article  Google Scholar 

  4. 4.

    Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39(3):459–471

    MathSciNet  Article  Google Scholar 

  5. 5.

    Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: World congress on nature and biologically inspired computing, 2009. NaBIC 2009. IEEE, pp 210–214

  6. 6.

    Yang XS (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio Inspired Comput 2:78–84

    Article  Google Scholar 

  7. 7.

    Gao WF, Liu SY, Huang LL (2013) A novel artificial bee colony algorithm based on modified search equation and orthogonal learning. IEEE Trans Cybern 43(3):1011–1024

    Article  Google Scholar 

  8. 8.

    Zhu G, Kwong S (2010) Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl Math Comput 217(7):3166–3173

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Liu J, Zhu H, Ma Q, Zhang L, Xu H (2015) An artificial bee colony algorithm with guide of global and local optima and asynchronous scaling factors for numerical optimization. Appl Soft Comput 37:608–618

    Article  Google Scholar 

  10. 10.

    Xiang WL, An MQ (2013) An efficient and robust artificial bee colony algorithm for numerical optimization. Comput Oper Res 40(5):1256–1265

    MathSciNet  Article  Google Scholar 

  11. 11.

    Kiran MS, Hakli H, Gunduz M, Uguz H (2015) Artificial bee colony algorithm with variable search strategy for continuous optimization. Inf Sci 300:140–157

    MathSciNet  Article  Google Scholar 

  12. 12.

    Yurtkuran A, Emel E (2015) An adaptive artificial bee colony algorithm for global optimization. Appl Math Comput 271:1004–1023

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Wang H, Wu Z, Rahnamayan S, Sun H, Liu Y, Pan JS (2014) Multi-strategy ensemble artificial bee colony algorithm. Inf Sci 279:587–603

    MathSciNet  Article  Google Scholar 

  14. 14.

    Nseef SK, Abdullah S, Turky A, Kendall G (2016) An adaptive multi-population artificial bee colony algorithm for dynamic optimisation problems. Knowl Based Syst 104:14–23

    Article  Google Scholar 

  15. 15.

    Sharma H, Bansal JC, Arya KV, Yang XS (2016) Lévy flight artificial bee colony algorithm. Int J Syst Sci 47(11):2652–2670

    Article  Google Scholar 

  16. 16.

    Zhou X, Wang H, Wang M, Wan J (2017) Enhancing the modified artificial bee colony algorithm with neighborhood search. Soft Comput 21(10):2733–2743

    Article  Google Scholar 

  17. 17.

    Gaidhane PJ, Nigam MJ (2018) A hybrid grey wolf optimizer and artificial bee colony algorithm for enhancing the performance of complex systems. J Comput Sci 27:284–302

    Article  Google Scholar 

  18. 18.

    Lu R, Hu H, Xi M, Gao H, Pun CM (2019) An improved artificial bee colony algorithm with fast strategy, and its application. Comput Electr Eng 78:79–88

    Article  Google Scholar 

  19. 19.

    Murugan R, Mohan MR, Rajan CCA, Sundari PD, Arunachalam S (2018) Hybridizing bat algorithm with artificial bee colony for combined heat and power economic dispatch. Appl Soft Comput 72:189–217

    Article  Google Scholar 

  20. 20.

    Karaboga D, Gorkemli B, Ozturk C, Karaboga N (2014) A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif Intell Rev 42(1):21–57

    Article  Google Scholar 

  21. 21.

    Javidrad F, Nazari M (2017) A new hybrid particle swarm and simulated annealing stochastic optimization method. Appl Soft Comput 60:634–654

    Article  Google Scholar 

  22. 22.

    Jitkongchuen D (2015) A hybrid differential evolution with grey wolf optimizer for continuous global optimization. In: 7th International conference on information technology and electrical engineering (ICITEE), 2015. IEEE, pp 51–54

  23. 23.

    Shankar T, Shanmugavel S, Rajesh A (2016) Hybrid HSA and PSO algorithm for energy efficient cluster head selection in wireless sensor networks. Swarm Evol Comput 30:1–10

    Article  Google Scholar 

  24. 24.

    Tawhid MA, Ali AF (2017) A hybrid grey wolf optimizer and genetic algorithm for minimizing potential energy function. Memet Comput 9(4):347–359

    Article  Google Scholar 

  25. 25.

    Zhang X, Kang Q, Cheng J, Wang X (2018) A novel hybrid algorithm based on biogeography-based optimization and grey wolf optimizer. Appl Soft Comput 67:197–214

    Article  Google Scholar 

  26. 26.

    Aydilek İB (2018) A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems. Appl Soft Comput 66:232–249

    Article  Google Scholar 

  27. 27.

    Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133

    Article  Google Scholar 

  28. 28.

    Nenavath H, Jatoth RK, Das S (2018) A synergy of the sine-cosine algorithm and particle swarm optimizer for improved global optimization and object tracking. Swarm Evol Comput 43:1–30

    Article  Google Scholar 

  29. 29.

    Gao W, Liu S, Huang L (2012) A global best artificial bee colony algorithm for global optimization. J Comput Appl Math 236(11):2741–2753

    MathSciNet  Article  Google Scholar 

  30. 30.

    Long W, Jiao J, Liang X, Tang M (2018) An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization. Eng Appl Artif Intell 68:63–80

    Article  Google Scholar 

  31. 31.

    Gao WF, Liu SY, Huang LL (2014) Enhancing artificial bee colony algorithm using more information-based search equations. Inf Sci 270:112–133

    MathSciNet  Article  Google Scholar 

  32. 32.

    Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  33. 33.

    Deep K, Thakur M (2007) A new mutation operator for real coded genetic algorithms. Appl Math Comput 193(1):211–230

    MathSciNet  MATH  Google Scholar 

  34. 34.

    Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: The 1998 IEEE international conference on evolutionary computation proceedings, 1998. IEEE world congress on computational intelligence. IEEE, pp 69–73

  35. 35.

    Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68

    Article  Google Scholar 

  36. 36.

    Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Article  Google Scholar 

  37. 37.

    Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249

    Article  Google Scholar 

  38. 38.

    Yang XS (2010) Firefly algorithm, stochastic test functions and design optimisation. arXiv preprint arXiv:1003.1409

  39. 39.

    Zhu G, Kwong S (2010) Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl Math Comput 217(7):3166–3173

    MathSciNet  MATH  Google Scholar 

  40. 40.

    Kapur JN, Sahoo PK, Wong AK (1985) A new method for gray-level picture thresholding using the entropy of the histogram. Comput Vis Graph Image Process 29(3):273–285

    Article  Google Scholar 

  41. 41.

    Shannon C (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

The first author would like to thank Ministry of Human Resources, Government of India, for funding this research. Grant No. MHR-02-41-113-429.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shubham Gupta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Deep, K. Hybrid sine cosine artificial bee colony algorithm for global optimization and image segmentation. Neural Comput & Applic 32, 9521–9543 (2020). https://doi.org/10.1007/s00521-019-04465-6

Download citation

Keywords

  • Optimization
  • Artificial bee colony (ABC) algorithm
  • Sine cosine algorithm (SCA)
  • Hybrid algorithms
  • Multilevel thresholding