A new discriminative collaborative representation-based classification method via l2 regularizations


Collaborative representation-based classification (CRC) is one of the famous representation-based classification methods in pattern recognition. However, a testing sample in most of the CRC variants is collaboratively reconstructed by a linear combination of all the training samples from all the classes, the training samples from the class that the testing sample belongs to have no advantage in discriminatively and competitively representing and classifying the testing sample. Moreover, the incorrect classification can easily come into being when the training samples from the different classes are very similar. To address the issues, we propose a novel discriminative collaborative representation-based classification (DCRC) method via \(l_2\) regularizations to enhance the power of pattern discrimination. In the proposed model, we consider not only the discriminative decorrelations among all the classes, but also the similarities between the reconstructed representation of all the classes and the class-specific reconstructed representations in the \(l_2\) regularizations. The experiments on several public face databases have demonstrated that the proposed DCRC effectively and robustly outperforms the state-of-the-art representation-based classification methods.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. 1.


  2. 2.


  3. 3.


  4. 4.


  5. 5.



  1. 1.

    Zhang, L, Yang, M, Feng, X (2011) Sparse representation or collaborative representation: Which helps face recognition? In: International conference on computer vision (ICCV2011), pp 471–478

  2. 2.

    Yang M, Zhang L, Zhang D (2012) Relaxed collaborative representation for pattern classification. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 2224–2231

  3. 3.

    Zhu P, Zhang L, Hu Q (2012) Multi-scale patch based collaborative representation for face recognition with margin distribution optimization. In: European conference on computer vision (ECCV). Springer, Berlin, Heidelberg, pp 822–835

  4. 4.

    Chi Y, Porikli F (2014) Classification and boosting with multiple collaborative representations. IEEE Trans Pattern Anal Mach Intell 36(8):1519–1531

    Article  Google Scholar 

  5. 5.

    Li W, Du Q (2015) Collaborative representation for hyperspectral anomaly detection. IEEE Trans Geosci Remote Sens 53(3):1463–1474

    Article  Google Scholar 

  6. 6.

    Yang W, Wang Z, Sun C (2015) A collaborative representation based projections method for feature extraction. Pattern Recognit 48(1):20–27

    Article  Google Scholar 

  7. 7.

    Yang M, Wang X, Zeng G (2017) Joint and collaborative representation with local adaptive convolution feature for face recognition with single sample per person. Pattern Recognit 66:117–128

    Article  Google Scholar 

  8. 8.

    Su H, Zhao B, Du Q (2018) Multifeature dictionary learning for collaborative representation classification of hyperspectral imagery. IEEE Trans Geosci Remote Sens 56(4):2467–2484

    Article  Google Scholar 

  9. 9.

    Zheng C, Wang N (2019) Collaborative representation with k-nearest classes for classification. Pattern Recognit Lett 117:30–36

    Article  Google Scholar 

  10. 10.

    Zeng S, Zhang B, Lan Y, Gou J (2018) Robust collaborative representation-based classification via regularization of truncated total least squares. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3403-7

  11. 11.

    Deng W, Hu J, Guo J (2018) Face recognition via collaborative representation: its discriminant nature and superposed representation. IEEE Trans Pattern Anal Mach Intell 40(10):2513–2521

    Article  Google Scholar 

  12. 12.

    Cai S, Zhang L, Zuo W (2016) A probabilistic collaborative representation based approach for pattern classification. In: IEEE conference on computer vision and pattern recognition (CVPR). IEEE Computer Society, pp 2950–2959

  13. 13.

    Yang W, Wang Z, Yin J (2013) Image classification using kernel collaborative representation with regularized least square. Appl Math Comput 222:13–28

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Su H, Zhao B, Du Q (2016) Tangent distance-based collaborative representation for hyperspectral image classification. IEEE Geosci Remote Sens Lett 13(9):1236–1240

    Article  Google Scholar 

  15. 15.

    Liu J, Wu Z, Li J (2016) Probabilistic-kernel collaborative representation for spatial–spectral hyperspectral image classification. IEEE Trans Geosci Remote Sens 54(4):2371–2384

    Article  Google Scholar 

  16. 16.

    Jiang J, Chen C, Yu Y (2017) Spatial-aware collaborative representation for hyperspectral remote sensing image classification. IEEE Geosci Remote Sens Lett 14(3):404–408

    Article  Google Scholar 

  17. 17.

    Zhu P, Zuo W, Zhang L (2014) Image set-based collaborative representation for face recognition. IEEE Trans Inf Forensics Secur 9(7):1120–1132

    Article  Google Scholar 

  18. 18.

    Zeng S, Yang X, Gou J (2017) Multiplication fusion of sparse and collaborative representation for robust face recognition. Multimed Tools Appl 76(20):20889–20907

    Article  Google Scholar 

  19. 19.

    Xu Y, Li X, Yang J (2014) Integrating conventional and inverse representation for face recognition. IEEE Trans Cybern 44(10):1738–1746

    Article  Google Scholar 

  20. 20.

    Xu Y, Zhu Q (2013) A simple and fast representation-based face recognition method. Neural Comput Appl 22(7–8):1543–1549

    Article  Google Scholar 

  21. 21.

    Gou J, Xu Y, Zhang D, Mao Q, Du L, Zhan Y (2018) Two-phase linear reconstruction measure-based classification for face recognition. Inf Sci 433:17–36

    MathSciNet  Article  Google Scholar 

  22. 22.

    Wang W, Yan Y, Zhang L (2016) Collaborative sparse coding for multiview action recognition. IEEE MultiMedia 23(4):80–87

    Article  Google Scholar 

  23. 23.

    Gao Z, Li S, Zhu Y (2017) Collaborative sparse representation leaning model for RGBD action recognition. J Vis Commun Image Represent 48:442–452

    Article  Google Scholar 

  24. 24.

    Wright J, Yang AY, Ganesh A (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227

    Article  Google Scholar 

  25. 25.

    Gou J, Hou B, Ou W, Mao Q, Yang H, Liu Y (2019) Several robust extensions of collaborative representation for image classification. Neurocomputing 348:120–133

    Article  Google Scholar 

  26. 26.

    Lan R, Zhou Y (2017) An extended probabilistic collaborative representation based classifier for image classification. In: IEEE international conference on multimedia and expo (ICME), pp 1392–1397

  27. 27.

    Wei L, Xu F, Yin J (2014) Kernel locality-constrained collaborative representation based discriminant analysis. Knowl-Based Syst 70:212–220

    Article  Google Scholar 

  28. 28.

    Liu W, Lu L, Li H (2014) A novel kernel collaborative representation approach for image classification. In: IEEE international conference on image processing (ICIP), pp 4241–4245

  29. 29.

    Liu W, Yu Z, Lu L (2015) KCRC-LCD: discriminative kernel collaborative representation with locality constrained dictionary for visual categorization. Pattern Recognit 48(10):3076–3092

    Article  Google Scholar 

  30. 30.

    Chen S, Li S, Ji R (2016) Discriminative local collaborative representation for online object tracking. Knowl-Based Syst 100:13–24

    Article  Google Scholar 

  31. 31.

    Timofte R, Van Gool L (2014) Adaptive and weighted collaborative representations for image classification. Pattern Recognit Lett 43:127–135

    Article  Google Scholar 

  32. 32.

    Peng X, Zhang L, Zhang Y (2014) Learning locality-constrained collaborative representation for robust face recognition. Pattern Recognit 47(9):2794–2806

    Article  Google Scholar 

  33. 33.

    Waqas J, Yi Z, Zhang L (2013) Collaborative neighbor representation based classification using \(l_2\)-minimization approach. Pattern Recognit Lett 34(2):201–208

    Article  Google Scholar 

  34. 34.

    Jin T, Liu Z, Yu Z (2016) Locality preserving collaborative representation for face recognition. Neural Process Lett 45(3):1–13

    Google Scholar 

  35. 35.

    Huang W, Wang X, Jin Z (2015) Penalized collaborative representation based classification for face recognition. Appl Intell 43(4):722–731

    Article  Google Scholar 

  36. 36.

    Dong X, Zhang H, Zhu L (2019) Weighted locality collaborative representation based on sparse subspace. J Vis Commun Image Represent 58:187–194

    Article  Google Scholar 

  37. 37.

    H Li, M Yang (2017) Joint collaborative representation with deep feature for image-set face recognition. In: Chinese conference on biometric recognition. Springer, Cham, pp 172–182

  38. 38.

    Zeng S, Zhang B, Zhang Y, Gou J (2018) Collaboratively weighting deep and classic representation via \(l_{2}\) regularization for image classification. In: Asian conference on machine learning, pp 502–517

  39. 39.

    Vo DM, Lee SW (2018) Robust face recognition via hierarchical collaborative representation. Inf Sci 432:332–346

    MathSciNet  Article  Google Scholar 

  40. 40.

    Zeng S, Gou J, Yang X (2018) Improving sparsity of coefficients for robust sparse and collaborative representation-based image classification. Neural Comput Appl 30(10):2965–2978

    Article  Google Scholar 

  41. 41.

    Akhtar N, Shafait F, Mian A (2017) Efficient classification with sparsity augmented collaborative representation. Pattern Recognit 65:136–145

    Article  Google Scholar 

  42. 42.

    Yang M, Zhang L, Feng X (2011) Fisher discrimination dictionary learning for sparse representation. In: IEEE international conference on computer vision (ICCV), pp 543–550

  43. 43.

    Wu Y, Li W, Mukunoki M (2014) Discriminative collaborative representation for classification. In: Asian conference on computer vision. Springer, Cham, pp 205–221

  44. 44.

    Xu Y, Zhong Z, Yang J (2017) A new discriminative sparse representation method for robust face recognition via \(l_ {2}\) regularization. IEEE Trans Neural Netw Learn Syst 28(10):2233–2242

    MathSciNet  Article  Google Scholar 

  45. 45.

    Gou J, Wang L, Yi Z, Lv J, Mao Q (2018) A new discriminative collaborative neighbor representation method for robust face recognition. IEEE Access 6:74713–74727

    Article  Google Scholar 

  46. 46.

    Zeng S, Gou J, Deng L (2017) An antinoise sparse representation method for robust face recognition via joint \(l_{1}\) and \(l_{2}\) regularization. Expert Syst Appl 82:1–9

    Article  Google Scholar 

  47. 47.

    Yuan H, Li X, Xu F et al (2018) A collaborative–competitive representation based classifier model. Neurocomputing 275:627–635

    Article  Google Scholar 

  48. 48.

    Chi H, Xia H, Zhang L (2018) Competitive and collaborative representation for classification. Pattern Recognit Lett. https://doi.org/10.1016/j.patrec.2018.06.019

  49. 49.

    Deng Y, Bao F, Kong Y, Ren Z, Dai Q (2017) Deep direct reinforcement learning for financial signal representation and trading. IEEE Trans Neural Netw Learn Syst 28(3):653–664

    Article  Google Scholar 

  50. 50.

    Li Z, Liu J, Tang J, Lu H (2015) Robust structured subspace learning for data representation. IEEE Trans Pattern Anal Mach Intell 37(10):2085–2098

    Article  Google Scholar 

  51. 51.

    Deng Y, Ren Z, Kong Y, Bao F, Dai Q (2017) A hierarchical fused fuzzy deep neural network for data classification. IEEE Tran Fuzzy Syst 25(4):1006–1012

    Article  Google Scholar 

  52. 52.

    Tariyal S, Majumdar A, Singh R, Vatsa M (2016) Deep dictionary learning. IEEE Access 4:10096–10109

    Article  Google Scholar 

  53. 53.

    Deng Y, Bao F, Deng X, Wang R, Kong Y, Dai Q (2016) Deep and structured robust information theoretic learning for image analysis. IEEE Trans Image Process 25(9):4209–4221

    MathSciNet  MATH  Google Scholar 

  54. 54.

    Manjani I, Tariyal S, Vatsa M, Singh R, Majumdar A (2017) Detecting silicone mask-based presentation attack via deep dictionary learning. IEEE Trans Inf Forensics Secur 12(7):1713–1723

    Article  Google Scholar 

  55. 55.

    Gou J, Qiu W, Zhang Y, Xu Y, Mao Q, Zhan Y (2019) A local mean representation-based K-nearest neighbor classifier. ACM Trans Intell Syst Technol 10(3):29

    Article  Google Scholar 

  56. 56.

    Gou J, Ma H, Ou W, Zheng S, Rao Y (2019) A generalized mean distance-based k-nearest neighbor classifier. Expert Syst Appl 115:356–372

    Article  Google Scholar 

  57. 57.

    Wang H, Dai L, Cai Y, Sun X, Chen L (2018) Salient object detection based on multi-scale contrast. Neural Netw 101:47–56

    Article  Google Scholar 

  58. 58.

    Deng Y, Bao F, Yang Y, Ji X, Du M, Zhang Z, Dai Q (2017) Information transduction capacity reduces the uncertainties in annotation-free isoform discovery and quantification. Nucleic Acids Res 45(15):e143–e143

    Article  Google Scholar 

  59. 59.

    Cai Y, Liu Z, Wang H, Sun X (2017) Saliency-based pedestrian detection in far infrared images. IEEE Access 5:5013–5019

    Google Scholar 

  60. 60.

    Zhan Y, Liu J, Gou J, Wang M (2016) A video semantic detection method based on locality-sensitive discriminant sparse representation and weighted KNN. J Vis Commun Image Represent 41:65–73

    Article  Google Scholar 

  61. 61.

    Li Z, Tang J, Mei T (2018) Deep collaborative embedding for social image understanding. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2018.2852750

  62. 62.

    Zhang M, Li W, Du Q (2018) Diverse region-based CNN for hyperspectral image classification. IEEE Trans Image Process 27(6):2623–2634

    MathSciNet  MATH  Article  Google Scholar 

  63. 63.

    Deng Y, Zhao Y, Ren Z, Kong Y, Bao F, Dai Q (2016) Discriminant kernel assignment for image coding. IEEE Trans Cybern 47(6):1434–1445

    Article  Google Scholar 

Download references


This work was supported in part by National Natural Science Foundation of China (Grant Nos. 61502208, 61762021 and 61402122), Natural Science Foundation of Jiangsu Province of China (Grant No. BK20150522), International Postdoctoral Exchange Fellowship Program of China Postdoctoral Council (No. 20180051), Research Foundation for Talented Scholars of JiangSu University (Grant No. 14JDG037), China Postdoctoral Science Foundation (Grant No. 2015M570411), Open Foundation of Artificial Intelligence Key Laboratory of Sichuan Province (Grant No. 2017RYJ04), and Natural Science Foundation of Guizhou Province (Nos. [2017]1130 and [2017]5726-32). The authors would like to thank Jia Ke for some helpful suggestions and discussions for the revisions of this article. Furthermore, they thank the editors and reviewers for valuable comments to improve our article.

Author information



Corresponding author

Correspondence to Jianping Gou.

Ethics declarations

Conflict of interest

All the authors declare that there is no conflict of interests regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gou, J., Hou, B., Yuan, Y. et al. A new discriminative collaborative representation-based classification method via l2 regularizations. Neural Comput & Applic 32, 9479–9493 (2020). https://doi.org/10.1007/s00521-019-04460-x

Download citation


  • Collaborative representation
  • Representation-based classification
  • Pattern recognition