Accurate ride comfort estimation combining accelerometer measurements, anthropometric data and neural networks

Abstract

Ride comfort can heavily influence user experience and therefore comprises one of the most important vehicle design targets. Although ride comfort has been heavily researched, there is still no definite solution to its accurate estimation. This can be attributed, to a large extent, to the subjective nature of the problem. Aim of this study was to explore the use of neural networks for the accurate estimation of ride comfort by combining anthropometric data and acceleration measurements. Different acceleration inputs, neural network architectures, training algorithms and objective functions were systematically investigated, and optimal parameters were derived. New insight into the influence of anthropometric data on ride comfort has been gained. The results indicate that the proposed method improves the accuracy of subjective ride comfort estimation compared to current standards. Neural networks were trained using data derived from a range of field trials involving ten participants, on public roads and controlled environment. A clustering and sensitivity analysis complements the study and identifies the most important factors influencing subjective ride comfort evaluation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. 1.

    Warner JAC (1924) Riding qualities research. J Soc Automot Eng 15:75-81

    Google Scholar 

  2. 2.

    Hu Y, Chen MZQ, Sun Y (2017) Comfort-oriented vehicle suspension design with skyhook inerter configuration. J Sound Vib 405:34–47. https://doi.org/10.1016/j.jsv.2017.05.036

    Article  Google Scholar 

  3. 3.

    Kanarachos S, Dizqah AM, Chrysakis G, Fitzpatrick ME (2018) Optimal design of a quadratic parameter varying vehicle suspension system using contrast-based fruit fly optimisation. Appl Soft Comput 62:463–477. https://doi.org/10.1016/J.ASOC.2017.11.005

    Article  Google Scholar 

  4. 4.

    Merker T, Girres G, Thriemer O (2002) Active body control (ABC) the daimlerchrysler active suspension and damping system. SAE International, Warrendale

    Google Scholar 

  5. 5.

    Brown TL, Mear ST, Moore NE et al (1992) An experimental procedure for estimating ride quality for passive and semi-active suspension automobiles. SAE International, Warrendale

    Google Scholar 

  6. 6.

    Silveira M, Pontes BR, Balthazar JM (2014) Use of nonlinear asymmetrical shock absorber to improve comfort on passenger vehicles. J Sound Vib 333:2114–2129. https://doi.org/10.1016/j.jsv.2013.12.001

    Article  Google Scholar 

  7. 7.

    Eriksson J, Svensson L (2015) Tuning for Ride quality in autonomous vehicle: application to linear quadratic path planning algorithm. Dissertation

  8. 8.

    Fazlollahtabar H (2010) A subjective framework for seat comfort based on a heuristic multi criteria decision making technique and anthropometry. Appl Ergon 42:16–28. https://doi.org/10.1016/J.APERGO.2010.04.004

    Article  Google Scholar 

  9. 9.

    Kolich M (2008) A conceptual framework proposed to formalize the scientific investigation of automobile seat comfort. Appl Ergon 39:15–27. https://doi.org/10.1016/j.apergo.2007.01.003

    Article  Google Scholar 

  10. 10.

    Versace J (1959) Subjective measurements in engineering. Society of automotive engineers. In: Annual meeting proceedings. Detroit, MI

  11. 11.

    Evans RD (1951) Riding comfort. SAE Technical Paper 510038. https://doi.org/10.4271/510038

  12. 12.

    Pradko F, Orr TR, Lee RA (1965) Human vibration analysis. In: SAE Technical Paper 650426

  13. 13.

    Miwa T (1967) Evaluation methods for vibration effects part 2. Measurement of equal sensation level for whole body between vertical and horizontal sinusoidal vibrations. Ind Health 5:206–212. https://doi.org/10.2486/indhealth.5.206

    Article  Google Scholar 

  14. 14.

    Janeway RN (1975) Human vibration tolerance criteria and applications to ride evaluation. SAE International, Warrendale

    Google Scholar 

  15. 15.

    Mehta NC (1981) Subjective and objective ride evaluations of commercial vehicles. SAE International, Warrendale

    Google Scholar 

  16. 16.

    Miller J (1981) A subjective assessment of truck ride quality. SAE Technical Paper 810047. https://doi.org/10.4271/810047

  17. 17.

    Schneider LW (1989) Survey of driver seating discomfort and related factors. Report Number: UMTRI-89-23. http://hdl.handle.net/2027.42/843

  18. 18.

    Berger E, Gilmore BJ (1993) Seat dynamic parameters for ride quality. SAE International, Warrendale

    Google Scholar 

  19. 19.

    Beard GF, Griffin MJ (2016) Discomfort of seated persons exposed to low frequency lateral and roll oscillation: effect of backrest height. Appl Ergon 54:51–61. https://doi.org/10.1016/j.apergo.2015.11.010

    Article  Google Scholar 

  20. 20.

    Park J, Lee J, Ahn S, Jeong W (2017) Reduced ride comfort caused by beating idle vibrations in passenger vehicles. Int J Ind Ergon 57:74–79. https://doi.org/10.1016/j.ergon.2016.12.003

    Article  Google Scholar 

  21. 21.

    Meusch J, Rahmatalla S (2014) Whole-body vibration transmissibility in supine humans: effects of board litter and neck collar. Appl Ergon 45:677–685. https://doi.org/10.1016/j.apergo.2013.09.007

    Article  Google Scholar 

  22. 22.

    Zhang X, Qiu Y, Griffin MJ (2015) Transmission of vertical vibration through a seat: effect of thickness of foam cushions at the seat pan and the backrest. Int J Ind Ergon 48:36–45. https://doi.org/10.1016/j.ergon.2015.03.006

    Article  Google Scholar 

  23. 23.

    Bergman C, Castro PR, Högberg D, Hanson L (2015) Implementation of suitable comfort model for posture and motion prediction in DHM supported vehicle design. Procedia Manuf 3:3753–3758. https://doi.org/10.1016/j.promfg.2015.07.816

    Article  Google Scholar 

  24. 24.

    Florin A, Manolache-Rusu I-C, Patuleanu L (2013) Pasive suspension modeling using matlab, quarter car model, input signal step type. Teh—New Technol Prod Mach Manuf Technol

  25. 25.

    Geweda AE, El-Gohary MA, El-Nabawy AM, Awad T (2017) Improvement of vehicle ride comfort using genetic algorithm optimization and PI controller. Alexandria Eng J. https://doi.org/10.1016/j.aej.2017.05.014

    Article  Google Scholar 

  26. 26.

    Mustafa GIY, Wang HP, Tian Y (2018) Vibration control of an active vehicle suspension systems using optimized model-free fuzzy logic controller based on time delay estimation. Adv Eng Softw. https://doi.org/10.1016/J.ADVENGSOFT.2018.04.009

    Article  Google Scholar 

  27. 27.

    Goldman D (1948) A review of subjective responses to vibratory motion of the human body in the frequency range 1 to 70 cycles per second. Naval Medical Research Institute National Naval Medical Center, Bethesda

    Google Scholar 

  28. 28.

    Griffin MJ (1996) Handbook of human vibration. Elsevier, Amsterdam

    Google Scholar 

  29. 29.

    Mansfield NJ (2004) Human response to vibration. CRC Press, Boca Raton

    Google Scholar 

  30. 30.

    Lee RA, Pradko F (1968) Analytical analysis of human vibration. SAE International, Warrendale

    Google Scholar 

  31. 31.

    ISO 2631-1:1997—Mechanical vibration and shock—Evaluation of human exposure to whole-body vibration—Part 1: General requirements. http://www.iso.org/iso/catalogue_detail.htm?csnumber=7612. Accessed 5 Nov 2015

  32. 32.

    Shurpali MV, Mullinix L (2011) An approach for validation of suspension seat for ride comfort using multi-body dynamics. SAE International, Warrendale

    Google Scholar 

  33. 33.

    Els PS (2005) The applicability of ride comfort standards to off-road vehicles. J Terramechanics 42:47–64. https://doi.org/10.1016/j.jterra.2004.08.001

    Article  Google Scholar 

  34. 34.

    Chaturvedi B, Rana D, Ravindran M (2010) Correlation of vehicle dynamics & NVH performance with body static & dynamic stiffness through CAE and experimental analysis. SAE Technical Paper 2010-01-1137. https://doi.org/10.4271/2010-01-1137

  35. 35.

    Hiemstra-van Mastrigt S, Kamp I, van Veen SAT et al (2015) The influence of active seating on car passengers’ perceived comfort and activity levels. Appl Ergon 47:211–219. https://doi.org/10.1016/j.apergo.2014.10.004

    Article  Google Scholar 

  36. 36.

    Kudritzki DK (2001) Road tests adopted to analyse cars’ vibrational behaviour. SAE International, Warrendale

    Google Scholar 

  37. 37.

    Badiru I, Cwycyshyn WB (2013) Customer focus in ride development. SAE International, Warrendale

    Google Scholar 

  38. 38.

    Thite AN (2012) Development of a refined quarter car model for the analysis of discomfort due to vibration. Adv Acoust Vib 2012:1–7. https://doi.org/10.1155/2012/863061

    Article  Google Scholar 

  39. 39.

    Mansfield N, Sammonds G, Nguyen L (2015) Driver discomfort in vehicle seats—Effect of changing road conditions and seat foam composition. Appl Ergon 50:153–159. https://doi.org/10.1016/j.apergo.2015.03.010

    Article  Google Scholar 

  40. 40.

    Nykänen A, Lennström D, Johnsson R (2015) Car ride before entering the lab increases precision in listening tests. SAE Int J Passeng Cars Mech Syst 8:2015-01–2285. https://doi.org/10.4271/2015-01-2285

    Article  Google Scholar 

  41. 41.

    Schust M, Blüthner R, Seidel H (2006) Examination of perceptions (intensity, seat comfort, effort) and reaction times (brake and accelerator) during low-frequency vibration in x- or y-direction and biaxial (xy-) vibration of driver seats with activated and deactivated suspension. J Sound Vib 298:606–626. https://doi.org/10.1016/j.jsv.2006.06.029

    Article  Google Scholar 

  42. 42.

    Ebe K, Griffin MJ (2001) Factors affecting static seat cushion comfort. Ergonomics 44:901–921. https://doi.org/10.1080/00140130110064685

    Article  Google Scholar 

  43. 43.

    Gillespie TD (1992) Fundamentals of vehicle dynamics. SAE International, Warrendale

    Google Scholar 

  44. 44.

    Versace J (1963) Measurement of ride comfort. In: Automotive engineering congress and exposition. Paper 638A, Society of Automotive Engineers. Detroit, Michigan

  45. 45.

    Kudritzki DK (2007) Ridemeter—Calculated ride comfort. SAE International, Warrendale

    Google Scholar 

  46. 46.

    Kitazaki S, Griffin MJ (1997) Resonance behaviour of the seated human body and effects of posture. J Biomech 31:143–149. https://doi.org/10.1016/S0021-9290(97)00126-7

    Article  Google Scholar 

  47. 47.

    Kato K, Kitazaki S, Sonoda T (2009) Effects of driver’s head motion and visual information on perception of ride comfort. SAE International, Warrendale

    Google Scholar 

  48. 48.

    Kyung G, Nussbaum MA (2008) Driver sitting comfort and discomfort (part II): relationships with and prediction from interface pressure. Int J Ind Ergon 38:526–538. https://doi.org/10.1016/j.ergon.2007.08.011

    Article  Google Scholar 

  49. 49.

    Elbanhawi M, Simic M, Jazar R (2015) In the passenger seat: investigating ride comfort measures in autonomous cars. IEEE Intell Transp Syst Mag 7:4–17. https://doi.org/10.1109/MITS.2015.2405571

    Article  Google Scholar 

  50. 50.

    Kolich M (2004) Predicting automobile seat comfort using a neural network. Int J Ind Ergon 33:285–293. https://doi.org/10.1016/j.ergon.2003.10.004

    Article  Google Scholar 

  51. 51.

    Blundell M, Harty D (2004) Multibody systems approach to vehicle dynamics. Elsevier, Amsterdam

    Google Scholar 

  52. 52.

    Zhao X, Schindler C (2014) Evaluation of whole-body vibration exposure experienced by operators of a compact wheel loader according to ISO 2631-1:1997 and ISO 2631-5:2004. Int J Ind Ergon 44:840–850. https://doi.org/10.1016/j.ergon.2014.09.006

    Article  Google Scholar 

  53. 53.

    Little E, Handrickx P, Grote P et al (1999) Ride comfort analysis: practice and procedures. SAE International, Warrendale

    Google Scholar 

  54. 54.

    J1060 (2014) Subjective rating scale for evaluation of noise and ride comfort characteristics related to motor vehicle tires

  55. 55.

    Kim H-J, Martin BJ (2007) Estimation of body links transfer functions in vehicle vibration environment. SAE International, Warrendale

    Google Scholar 

  56. 56.

    Kyung G, Nussbaum MA, Babski-Reeves K (2008) Driver sitting comfort and discomfort (part I): use of subjective ratings in discriminating car seats and correspondence among ratings. Int J Ind Ergon 38:516–525. https://doi.org/10.1016/j.ergon.2007.08.010

    Article  Google Scholar 

  57. 57.

    Gurram R, Vértiz AM (1997) The role of automotive seat cushion deflection in improving ride comfort. SAE International, Warrendale

    Google Scholar 

  58. 58.

    Tuluie R, Stewart G (1999) Motorcycle suspension development using ride comfort analysis with a laboratory test system. J Engines 108(3):1905-1912. https://www.jstor.org/stable/44743513

  59. 59.

    Dewangan K, Rakheja S, Marcotte P (2018) Gender and anthropometric effects on whole-body vibration power absorption of the seated body. J Low Freq Noise, Vib Act Control 37:167–190. https://doi.org/10.1177/1461348418780017

    Article  Google Scholar 

  60. 60.

    Lundström R, Holmlund P, Lindberg L (1998) Absorption of energy during vertical whole-body vibration exposure. J Biomech 31:317–326. https://doi.org/10.1016/S0021-9290(98)00011-6

    Article  Google Scholar 

  61. 61.

    Adam SA, Jalil NAA (2017) Vertical suspension seat transmissibility and SEAT values for seated person exposed to whole-body vibration in agricultural tractor preliminary study. In: Procedia Engineering

  62. 62.

    Kolich M, Seal N, Taboun S (2004) Automobile seat comfort prediction: statistical model vs. artificial neural network. Appl Ergon 35:275–284. https://doi.org/10.1016/j.apergo.2004.01.007

    Article  Google Scholar 

  63. 63.

    Nima E (2008) Development of a semi-active intelligent suspension system for heavy vehicles. Doctoral thesis. UWSpace. http://hdl.handle.net/10012/3658

  64. 64.

    Lerspalungsanti S, Albers A, Ott S, Düser T (2015) Human ride comfort prediction of drive train using modeling method based on artificial neural networkS. Int J Automot Technol 16:153–166. https://doi.org/10.1007/s12239-015-0017-2

    Article  Google Scholar 

  65. 65.

    Sarawut L, Albert A, Sascha O (2013) Subjective evaluation and modeling of human ride comfort of electric vehicle using tools based on artificial neural networks. Springer, Berlin, pp 1777–1785

    Google Scholar 

  66. 66.

    Gao Y, Tang R, Liang J, et al (2010) Evaluation of vehicle ride comfort based on neural network. In: Procedings of SPIE. International Society opt Photonics 754407(2010). https://doi.org/10.1117/12.885814

  67. 67.

    Taghavifar H, Rakheja S (2018) Supervised ANN-assisted modeling of seated body apparent mass under vertical whole body vibration. Measurement 127:78–88. https://doi.org/10.1016/J.MEASUREMENT.2018.05.092

    Article  Google Scholar 

  68. 68.

    Nybacka M, He X, Su Z et al (2014) Links between subjective assessments and objective metrics for steering, and evaluation of driver ratings. Veh Syst Dyn 52:31–50. https://doi.org/10.1080/00423114.2013.876503

    Article  Google Scholar 

  69. 69.

    McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5:115–133. https://doi.org/10.1007/BF02478259

    MathSciNet  Article  MATH  Google Scholar 

  70. 70.

    Sydenham PH, Thorn R (2005) Handbook of measuring system design. Wiley, Hoboken

    Google Scholar 

  71. 71.

    Gill PE, Murray W, Wright MH (1981) Practical optimization. Academic Press, Cambridge

    Google Scholar 

  72. 72.

    Møller MF, Møller MF (1993) A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw 6:525–533

    Article  Google Scholar 

  73. 73.

    Abraham A, Sydenham PH, Thorn R (2005) Artificial neural networks. In: Sydenham PH, Thorn R (eds) Handbook of measuring system design. John Wiley & Sons, pp 900–909. ISBN:978-0-470-02143-9

Download references

Acknowledgements

This project is co-sponsored by HORIBA MIRA Ltd. and Coventry University and is a part of a PhD programme at Coventry University. Authors would like to thank HORIBA MIRA staff for participation in this research. We have no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Cieslak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cieslak, M., Kanarachos, S., Blundell, M. et al. Accurate ride comfort estimation combining accelerometer measurements, anthropometric data and neural networks. Neural Comput & Applic 32, 8747–8762 (2020). https://doi.org/10.1007/s00521-019-04351-1

Download citation

Keywords

  • Ride
  • Comfort perception
  • Vibration
  • Neural networks