A novel relative homogeneity thresholding method with optimization strategy

Abstract

Determining thresholds by measuring class variance is highly effective for image segmentation. Otsu’s method and its derivatives are common approaches that are both simple and adaptable. In spite of these methods’ excellent segmentation performance, images with particular gray distributions cause a thresholding bias that limits their usefulness. We explore the limitations of Otsu’s method and apply other evaluation criteria. In particular, we determine the relative homogeneity between the object and the background and then use it as a classification criterion along with a new binary thresholding method. Our method employs a histogram-smoothing method to improve valley-point selection, establishes a uniformity measure to identify the region with the best homogeneity, and identifies an optimization function for obtaining the best values for the adjustable parameters and threshold value. We also introduce a multilevel thresholding criterion based on a binary thresholding approach. Experiments using real and ground truth test images confirm the validity of our proposed method. Our method also offers a denoising ability when configured to use neighborhood information.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

References

  1. 1.

    Sima HF, Guo P, Zou YF, Wang ZH, Xu ML (2018) Bottom-up merging segmentation for color images with complex areas. IEEE Trans Syst Man Cybern Syst 48(3):354–365

    Article  Google Scholar 

  2. 2.

    Oktay O, Ferrante E, Kamnitsas K, Heinrich M, Bai WJ, Caballero J, Cook SA, Marvao A, Dawes T, O’Regan DP, Kainz B, Glocker B, Rueckert D (2018) Anatomically Constrained Neural Networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE Trans Med Image 37(2):384–395

    Article  Google Scholar 

  3. 3.

    Wang T, Yang J, Ji ZX, Sun QS (2019) Probabilistic diffusion for interactive image segmentation. IEEE Trans Image Process 28(1):330–342

    MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    Garcia-Lamont F, Cervantes J, López A, Rodriguez L (2018) Segmentation of images by color features: a survey. Neurocomputing 292(5):1–27

    Article  Google Scholar 

  5. 5.

    Eltanboly A, Ghazal M, Hajjdiab H, Shalaby A, Switala A, Mahmoud A, Sahoo P, El-Azab M, El-Baz A (2019) Level sets-based image segmentation approach using statistical shape priors. Appl Math Comput 40(1):164–179

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Shi CF, Cheng YZ, Wang JK, Wang YD, Mori K, Tamura S (2017) Low-rank and sparse decomposition based shape model and probabilistic atlas for automatic pathological organ segmentation. Med Image Anal 38:30–49

    Article  Google Scholar 

  7. 7.

    Tong T, Wolz R, Wang ZH, Gao QQ, Misawa K, Fujiwara M, Mori K, Hajnal JV, Rueckert D (2015) Discriminative dictionary learning for abdominal multi-organ segmentation. Med Image Anal 23:92–104

    Article  Google Scholar 

  8. 8.

    Sahoo PK, Soltani S, Wong AKC (1988) A survey of thresholding techniques. Comput Vis Graphics Image Process 41(2):233–260

    Article  Google Scholar 

  9. 9.

    Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Article  Google Scholar 

  10. 10.

    Goh TY, Basah SN, Yazid H, Safar MJA, Saad FSA (2018) Performance analysis of image thresholding: Otsu technique. Measurement 114:298–307

    Article  Google Scholar 

  11. 11.

    Xue JH, Zhang YJ (2012) Ridler and Calvard’s, Kittler and Illingworth’s and Otsu’s methods for image thresholding. Pattern Recognit Lett 33:793–797

    Article  Google Scholar 

  12. 12.

    Xue JH, Titterington DM (2011) t-Test, F-tests and Otsu’s methods for image thresholding. IEEE Trans Image Process 20:2392–2396

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    Vala HJ, Baxi A (2013) A review on Otsu image segmentation algorithm. Int J Adv Res Comput Eng Technol 2(2):387–389

    Google Scholar 

  14. 14.

    Zou Y, Dong F, Lei B, Sun S, Jiang T, Chen P (2014) Maximum similarity thresholding. Digit Signal Proc 28:120–135

    Article  Google Scholar 

  15. 15.

    Fan JL, Lei B (2012) A modified valley-emphasis method for automatic thresholding. Pattern Recognit Lett 33(6):703–708

    Article  Google Scholar 

  16. 16.

    Yuan XC, Wu LS, Peng QJ (2015) An improved Otsu method using the weighted object variance for defect detection. Appl Surf Sci 349(15):472–484

    Article  Google Scholar 

  17. 17.

    Suheir M, Harb E, Isa NAM, Salamah SA (2015) Improved image magnification algorithm based on Otsu thresholding. Comput Electr Eng 46:338–355

    Article  Google Scholar 

  18. 18.

    Farrahi Moghaddam R, Cheriet M (2012) AdOtsu: an adaptive and parameterless generalization of Otsu’s method for document image binarization. Pattern Recognit 45(6):2419–2431

    Article  Google Scholar 

  19. 19.

    Lai YK, Rosin PL (2014) Efficient circular thresholding. IEEE Trans Image Process 23(3):992–1001

    MathSciNet  MATH  Article  Google Scholar 

  20. 20.

    Cai H, Yang Z, Cao X, Xia W, Xu X (2014) A new iterative triclass thresholding technique in image segmentation. IEEE Trans Image Process 23(3):1038–1046

    MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    Feng YC, Zhao HY, Li XF, Zhang XL, Li HP (2017) A multi-scale 3D Otsu thresholding algorithm for medical image segmentation. Digit Signal Proc 60:186–199

    Article  Google Scholar 

  22. 22.

    He S, Schomaker L (2019) DeepOtsu: document enhancement and binarization using iterative deep learning. Pattern Recognit 91:379–390

    Article  Google Scholar 

  23. 23.

    Manikandan S, Ramar K, Willjuice Iruthayarajan M, Srinivasagan KG (2014) Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm. Measurement 47:558–568

    Article  Google Scholar 

  24. 24.

    Bhandari AK, Kumar A, Singh GK (2015) Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using Kapur’s, Otsu and Tsallis functions. Expert Syst Appl 42(3):1573–1601

    Article  Google Scholar 

  25. 25.

    Zhao F, Liu HQ, Fan JL, Chen CW, Lan R, Li N (2018) Intuitionistic fuzzy set approach to multi-objective evolutionary clustering with multiple spatial information for image segmentation. Neurocomputing 312:296–309

    Article  Google Scholar 

  26. 26.

    Chen SC, Li DH (2006) Image binarization focusing on objects. Neurocomputing 69(16–18):2411–2415

    Article  Google Scholar 

  27. 27.

    Zhang H, Hu WY (2018) A modified thresholding method based on relative homogeneity. J Inf Hiding Multimed Signal Process 9(2):285–292

    Google Scholar 

  28. 28.

    Sezgin M, Sankur B (2004) Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging 13(1):146–168

    Article  Google Scholar 

  29. 29.

    Sezgin M, Sankur B (2003) Image multithresholding based on sample moment function. In: Proceeding of the 2003 IEEE international conference on image processing, vol 9. Barcelona, Spain, pp 415–418

  30. 30.

    Sezgin M (2017) blt_image_references. http://mehmetsezgin.net. Accessed 10 Nov 2017

  31. 31.

    Akay B (2013) A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding. Appl Soft Comput 13:3066–3091

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Science Foundation of China (Nos. 61571361, 61671377), the Science Plan Foundation of the Education Bureau of Shaanxi Province (No. 15JK1682), and Scientific Research Climbing Project of Xiamen University of Technology, No. XPDKT18016.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yi-Jui Chiu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Chiu, Y. & Fan, J. A novel relative homogeneity thresholding method with optimization strategy. Neural Comput & Applic 32, 8431–8449 (2020). https://doi.org/10.1007/s00521-019-04333-3

Download citation

Keywords

  • Thresholding segmentation
  • Relative homogeneity
  • Optimization strategy
  • Multilevel thresholding