Genetic programming-assisted multi-scale optimization for multi-objective dynamic performance of laminated composites: the advantage of more elementary-level analyses

Abstract

High-fidelity multi-scale design optimization of many real-life applications in structural engineering still remains largely intractable due to the computationally intensive nature of numerical solvers like finite element method. Thus, in this paper, an alternate route of metamodel-based design optimization methodology is proposed in multi-scale framework based on a symbolic regression implemented using genetic programming (GP) coupled with d-optimal design. This approach drastically cuts the computational costs by replacing the finite element module with appropriately constructed robust and efficient metamodels. Resulting models are compact, have good interpretability and assume a free-form expression capable of capturing the non-linearly, complexity and vastness of the design space. Two robust nature-inspired optimization algorithms, viz. multi-objective genetic algorithm and multi-objective particle swarm optimization, are used to generate Pareto optimal solutions for several test problems with varying complexity. TOPSIS, a multi-criteria decision-making approach, is then applied to choose the best alternative among the Pareto optimal sets. Finally, the applicability of GP in efficiently tackling multi-scale optimization problems of composites is investigated, where a real-life scenario is explored by varying fractions of pertinent engineering materials to bring about property changes in the final composite structure across two different scales. The study reveals that a microscale optimization leads to better optimized solutions, demonstrating the advantage of carrying out a multi-scale optimization without any additional computational burden.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Koide RM, Ferreira AP, Luersen MA (2015) Laminated composites buckling analysis using lamination parameters, neural networks and support vector regression. Lat Am J Solids Struct 12(2):271–294

    Article  Google Scholar 

  2. 2.

    Reddy MRS, Reddy BS, Reddy VN, Sreenivasulu S (2012) Prediction of natural frequency of laminated composite plates using artificial neural networks. Engineering 4(06):329

    Article  Google Scholar 

  3. 3.

    García-Macías E, Castro-Triguero R, Friswell MI, Adhikari S, Sáez A (2016) Metamodel-based approach for stochastic free vibration analysis of functionally graded carbon nanotube reinforced plates. Compos Struct 152:183–198

    Article  Google Scholar 

  4. 4.

    Mukhopadhyay T, Naskar S, Dey S, Adhikari S (2016) On quantifying the effect of noise in surrogate based stochastic free vibration analysis of laminated composite shallow shells. Compos Struct 140:798–805

    Article  Google Scholar 

  5. 5.

    Mukhopadhyay T, Mahata A, Dey S, Adhikari S (2016) Probabilistic analysis and design of HCP nanowires: an efficient surrogate based molecular dynamics simulation approach. J Mater Sci Technol 32(12):1345–1351

    Article  Google Scholar 

  6. 6.

    Mahata A, Mukhopadhyay T, Adhikari S (2016) A polynomial chaos expansion based molecular dynamics study for probabilistic strength analysis of nano-twinned copper. Mater Res Express 3:036501

    Article  Google Scholar 

  7. 7.

    Dey S, Mukhopadhyay T, Spickenheuer A, Gohs U, Adhikari S (2016) Uncertainty quantification in natural frequency of composite plates - An Artificial neural network based approach. Adv Compos Lett 25(2):43–48

    Article  Google Scholar 

  8. 8.

    Dey S, Mukhopadhyay T, Sahu SK, Adhikari S (2016) Effect of cutout on stochastic natural frequency of composite curved panels. Compos Part B Eng 105:188–202

    Article  Google Scholar 

  9. 9.

    Ju S, Shenoi RA, Jiang D, Sobey AJ (2013) Multi-parameter optimization of lightweight composite triangular truss structure based on response surface methodology. Compos Struct 97:107–116

    Article  Google Scholar 

  10. 10.

    Heinonen O, Pajunen S (2011) Optimal design of stiffened plate using metamodeling techniques. J Struct Mech 44(3):218–230

    Google Scholar 

  11. 11.

    Dutra TA, de Almeida SFM (2015) Composite plate stiffness multicriteria optimization using lamination parameters. Compos Struct 133:166–177

    Article  Google Scholar 

  12. 12.

    Passos AG, Luersen MA (2018) Multiobjective optimization of laminated composite parts with curvilinear fibers using Kriging-based approaches. Struct Multidiscip Optim 57(3):1115–1127

    Article  Google Scholar 

  13. 13.

    Ganguli R (2002) Optimum design of a helicopter rotor for low vibration using aeroelastic analysis and response surface methods. J Sound Vib 258(2):327–344

    Article  Google Scholar 

  14. 14.

    Dey S, Mukhopadhyay T, Khodaparast HH, Adhikari S (2016) A response surface modelling approach for resonance driven reliability-based optimization of composite shells. Period Polytech Civ Eng 60(1):103

    Article  Google Scholar 

  15. 15.

    Jafari R, Yousefi P, Hosseini-Hashemi S (2013) Vibration optimization of skew composite plates using the Rayleigh–Ritz and response surface methods. In: International conference on smart technologies for mechanical engineering

  16. 16.

    Todoroki A, Suenaga K, Shimamura Y (2003) Stacking sequence optimizations using modified global response surface in lamination parameters. Adv Compos Mater 12(1):35–55

    Article  Google Scholar 

  17. 17.

    Todoroki A, Sasai M (2002) Stacking sequence optimizations using GA with zoomed response surface on lamination parameters. Adv Compos Mater 11(3):299–318

    Article  Google Scholar 

  18. 18.

    Todoroki A, Ozawa T, Mizutani Y, Suzuki Y (2013) Thermal deformation constraint using response surfaces for optimization of stacking sequences of composite laminates. Adv Compos Mater 22(4):265–279

    Article  Google Scholar 

  19. 19.

    Todoroki A, Ishikawa T (2004) Design of experiments for stacking sequence optimizations with genetic algorithm using response surface approximation. Compos Struct 64(3–4):349–357

    Article  Google Scholar 

  20. 20.

    Karsh PK, Mukhopadhyay T, Dey S (2018) Spatial vulnerability analysis for the first ply failure strength of composite laminates including effect of delamination. Compos Struct 184:554–567

    Article  Google Scholar 

  21. 21.

    Mukhopadhyay T, Naskar S, Dey S, Chakrabarti A (2019) Condition assessment and strengthening of aged structures: perspectives based on a critical case study. Pract Period Struct Design Constr 24(3):5019003

    Article  Google Scholar 

  22. 22.

    Mukhopadhyay T, Naskar S, Karsh PK, Dey S, You Z (2018) Effect of delamination on the stochastic natural frequencies of composite laminates. Compos Part B Eng 154:242–256

    Article  Google Scholar 

  23. 23.

    Sliseris J, Rocens K (2013) Optimal design of composite plates with discrete variable stiffness. Compos Struct 98:15–23

    Article  Google Scholar 

  24. 24.

    Cardozo SD, Gomes H, Awruch A et al (2011) Optimization of laminated composite plates and shells using genetic algorithms, neural networks and finite elements. Lat Am J Solids Struct 8(4):413–427

    Article  Google Scholar 

  25. 25.

    Marín L, Trias D, Badalló P, Rus G, Mayugo JA (2012) Optimization of composite stiffened panels under mechanical and hygrothermal loads using neural networks and genetic algorithms. Compos Struct 94(11):3321–3326

    Article  Google Scholar 

  26. 26.

    Bacarreza O, Aliabadi MH, Apicella A (2015) Robust design and optimization of composite stiffened panels in post-buckling. Struct Multidiscip Optim 51(2):409–422

    Article  Google Scholar 

  27. 27.

    Nik MA, Fayazbakhsh K, Pasini D, Lessard L (2012) Surrogate-based multi-objective optimization of a composite laminate with curvilinear fibers. Compos Struct 94(8):2306–2313

    Article  Google Scholar 

  28. 28.

    Koza JR (1992) Genetic programming. MIT Press, Cambridge

    Google Scholar 

  29. 29.

    Hussain A, Sohail MF, Alam S, Ghauri SA, Qureshi IM (2018) Classification of M-QAM and M-PSK signals using genetic programming (GP). Neural Comput Appl. https://doi.org/10.1007/s00521-018-3433-1

    Article  Google Scholar 

  30. 30.

    Murata T, Ishibuchi H (1995) MOGA: multi-objective genetic algorithms. In: IEEE international conference on evolutionary computation

  31. 31.

    Mostaghim S, Teich J (2003) Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO). In: Proceedings of the swarm intelligence symposium, 2003. SIS’03. IEEE

  32. 32.

    Singh AP, Mani V, Ganguli R (2007) Genetic programming metamodel for rotating beams. Comput Model Eng Sci 21(2):133

    MATH  Google Scholar 

  33. 33.

    Jalal M, Ramezanianpour AA, Pouladkhan AR, Tedro P (2013) Application of genetic programming (GP) and ANFIS for strength enhancement modeling of CFRP-retrofitted concrete cylinders. Neural Comput Appl 23(2):455–470

    Article  Google Scholar 

  34. 34.

    Jones RM (1998) Mechanics of composite materials, 2nd edn. Taylor & Francis Ltd, London

    Google Scholar 

  35. 35.

    Dey S, Mukhopadhyay T, Adhikari S (2017) Metamodel based high-fidelity stochastic analysis of composite laminates: a concise review with critical comparative assessment. Compos Struct 171:227–250

    Article  Google Scholar 

  36. 36.

    Chakraborty S, Mandal B, Chowdhury R, Chakrabarti A (2016) Stochastic free vibration analysis of laminated composite plates using polynomial correlated function expansion. Compos Struct 135:236–249

    Article  Google Scholar 

  37. 37.

    Mukhopadhyay T, Dey TK, Chowdhury R, Chakrabarti A, Adhikari S (2015) Optimum design of FRP bridge deck: an efficient RS-HDMR based approach. Struct Multidiscip Optim 52(3):459–477

    Article  Google Scholar 

  38. 38.

    Vladislavleva EY (2008) Model-based problem solving through symbolic regression via pareto genetic programming. CentER, Tilburg University, Tilburg

    Google Scholar 

  39. 39.

    Sharifipour M, Bonakdari H, Zaji AH (2018) Comparison of genetic programming and radial basis function neural network for open-channel junction velocity field prediction. Neural Comput Appl 30(3):855–864

    Article  Google Scholar 

  40. 40.

    Koza JR (1994) Genetic programming as a means for programming computers by natural selection. Stat Comput 4(2):87–112

    Article  Google Scholar 

  41. 41.

    Barricelli NA et al (1954) Esempi numerici di processi di evoluzione. Methodos 6(21–22):45–68

    MathSciNet  Google Scholar 

  42. 42.

    Kalita K (2019) Design of composite laminates with nature-inspired optimization. PhD thesis. Indian Institute of Engineering Science and Technology Shibpur, India 711103. http://repository.iiests.ac.in:8480/xmlui/handle/123456789/450

  43. 43.

    Mukhopadhyay T, Dey T, Chowdhury R, Chakrabarti A (2015) Structural damage identification using response surface-based multi-objective optimization: a comparative study. Arab J Sci Eng 40(4):1027–1044

    MathSciNet  MATH  Article  Google Scholar 

  44. 44.

    Shi LM, Fang H, Tong W, Wu J, Perkins R, Blair RM, Branham WS, Dial SL, Moland CL, Sheehan DM (2001) QSAR models using a large diverse set of estrogens. J Chem Inf Comput Sci 41(1):186–195

    Article  Google Scholar 

  45. 45.

    Hawkins DM (2004) The problem of overfitting. J Chem Inf Comput Sci 44(1):1–12

    Article  Google Scholar 

  46. 46.

    Consonni V, Ballabio D, Todeschini R (2010) Evaluation of model predictive ability by external validation techniques. J Chemom 24:194–201

    Article  Google Scholar 

  47. 47.

    Goldberg DE (2006) Genetic algorithms. Pearson Education, Bengaluru

    Google Scholar 

  48. 48.

    Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the 6th international symposium on micro machine and human science, 1995. MHS’95

  49. 49.

    Diyaley S, Shilal P, Shivakoti I, Ghadai RK, Kalita K (2017) PSI and TOPSIS based selection of process parameters in WEDM. Period Polytech Eng Mech Eng 61(4):55

    Google Scholar 

  50. 50.

    Raju B, Hiremath SR, Mahapatra DR (2018) A review of micromechanics based models for effective elastic properties of reinforced polymer matrix composites. Compos Struct 204:607–619

    Article  Google Scholar 

  51. 51.

    Naskar S, Mukhopadhyay T, Sriramula S (2018) Probabilistic micromechanical spatial variability quantification in laminated composites. Compos B Eng 151:291–325

    Article  Google Scholar 

  52. 52.

    Naskar S, Mukhopadhyay T, Sriramula S (2019) Spatially varying fuzzy multi-scale uncertainty propagation in unidirectional fibre reinforced composites. Compos Struct 209:940–967

    Article  Google Scholar 

  53. 53.

    Naskar S, Mukhopadhyay T, Sriramula S, Adhikari S (2017) Stochastic natural frequency analysis of damaged thin-walled laminated composite beams with uncertainty in micromechanical properties. Compos Struct 160:312–334

    Article  Google Scholar 

  54. 54.

    Dey S, Mukhopadhyay T, Sahu SK, Adhikari S (2018) Stochastic dynamic stability analysis of composite curved panels subjected to non-uniform partial edge loading. Eur J Mech A Solids 67:108–122

    MathSciNet  MATH  Article  Google Scholar 

  55. 55.

    Kumar RR, Mukhopadhyay T, Pandey KM, Dey S (2019) Stochastic buckling analysis of sandwich plates: the importance of higher order modes. Int J Mech Sci 152:630–643

    Article  Google Scholar 

  56. 56.

    Dey S, Mukhopadhyay T, Adhikari S (2018) Uncertainty quantification in laminated composites: a meta-model based approach. CRC Press, Boca Raton ISBN 9781315155593

    Google Scholar 

  57. 57.

    Karsh PK, Mukhopadhyay T, Dey S (2019) Stochastic low-velocity impact on functionally graded plates: probabilistic and non-probabilistic uncertainty quantification. Compos B Eng 159:461–480

    Article  Google Scholar 

  58. 58.

    Dey S, Mukhopadhyay T, Naskar S, Dey TK, Chalak HD, Adhikari S (2019) Probabilistic characterization for dynamics and stability of laminated soft core sandwich plates. J Sandw Struct Mater 21(1):366–397

    Article  Google Scholar 

  59. 59.

    Karsh PK, Mukhopadhyay T, Dey S (2018) Stochastic dynamic analysis of twisted functionally graded plates. Compos B Eng 147:259–278

    Article  Google Scholar 

  60. 60.

    Maharshi K, Mukhopadhyay T, Roy B, Roy L, Dey S (2018) Stochastic dynamic behaviour of hydrodynamic journal bearings including the effect of surface roughness. Int J Mech Sci 142–143:370–383

    Article  Google Scholar 

  61. 61.

    Mukhopadhyay T (2018) A multivariate adaptive regression splines based damage identification methodology for web core composite bridges including the effect of noise. J Sandw Struct Mater 20(7):885–903

    Article  Google Scholar 

  62. 62.

    Dey TK, Mukhopadhyay T, Chakrabarti A, Sharma UK (2015) Efficient lightweight design of FRP bridge deck. Proc Inst Civ Eng Struct Build 168(10):697–707

    Article  Google Scholar 

  63. 63.

    Mukhopadhyay T, Chowdhury R, Chakrabarti A (2016) Structural damage identification: a random sampling-high dimensional model representation approach. Adv Struct Eng 19(6):908–927

    Article  Google Scholar 

  64. 64.

    Mukhopadhyay T, Dey TK, Dey S, Chakrabarti A (2015) Optimization of fiber reinforced polymer web core bridge deck—a hybrid approach. Struct Eng Int 25(2):173–183

    Article  Google Scholar 

  65. 65.

    Kalita K, Haldar S (2017) Eigenfrequencies of simply supported taper plates with cut-outs. Struct Eng Mech 63(1):103–113

    Google Scholar 

  66. 66.

    Kalita K, Ramachandran M, Raichurkar P, Mokal SD, Haldar S (2016) Free vibration analysis of laminated composites by a nine node isoparametric plate bending element. Adv Compos Lett 25(5):108

    Article  Google Scholar 

  67. 67.

    Sayyad AS, Ghugal YM (2015) On the free vibration analysis of laminated composite and sandwich plates: a review of recent literature with some numerical results. Compos Struct 129:177–201

    Article  Google Scholar 

  68. 68.

    Xiang S, Wang K-M, Ai Y-T, Sha Y-D, Shi H (2009) Natural frequencies of generally laminated composite plates using the Gaussian radial basis function and first-order shear deformation theory. Thin Walled Struct 47:1265–1271

    Article  Google Scholar 

  69. 69.

    Aydogdu M (2009) A new shear deformation theory for laminated composite plates. Compos Struct 89:94–101

    Article  Google Scholar 

  70. 70.

    Zhen W, Wanji C (2006) Free vibration of laminated composite and sandwich plates using global–local higher-order theory. J Sound Vib 298:333–349

    Article  Google Scholar 

  71. 71.

    Akhras G, Li W (2005) Static and free vibration analysis of composite plates using spline finite strips with higher-order shear deformation. Compos B Eng 36:496–503

    Article  Google Scholar 

  72. 72.

    Ray MC (2003) Zeroth-order shear deformation theory for laminated composite plates. J Appl Mech 70:374–380

    MATH  Article  Google Scholar 

  73. 73.

    Matsunaga H (2000) Vibration and stability of cross-ply laminated composite plates according to a global higher-order plate theory. Compos Struct 48:231–244

    Article  Google Scholar 

  74. 74.

    Wu C-P, Chen W-Y (1994) Vibration and stability of laminated plates based on a local high order plate theory. J Sound Vib 177:503–520

    MATH  Article  Google Scholar 

  75. 75.

    Cho KN, Bert CW, Striz AG (1991) Free vibrations of laminated rectangular plates analyzed by higher order individual-layer theory. J Sound Vib 145:429–442

    Article  Google Scholar 

  76. 76.

    Kant T, Manjunatha BS (1988) An unsymmetric FRC laminate C° finite element model with 12 degrees of freedom per node. Eng Comput 5:300–308

    Article  Google Scholar 

  77. 77.

    Pandya BN, Kant T (1988) Finite element analysis of laminated composite plates using a higher-order displacement model. Compos Sci Technol 32:137–155

    Article  Google Scholar 

  78. 78.

    Senthilnathan NR, Lim SP, Lee KH, Chow ST (1987) Buckling of shear-deformable plates. AIAA J 25:1268–1271

    Article  Google Scholar 

  79. 79.

    Phan ND, Reddy JN (1985) Analysis of laminated composite plates using a higher-order shear deformation theory. Int J Numer Meth Eng 21:2201–2219

    MATH  Article  Google Scholar 

  80. 80.

    Reddy JN (1984) A simple higher-order theory for laminated composite plates. J Appl Mech 51:745–752

    MATH  Article  Google Scholar 

  81. 81.

    Whitney JM, Pagano NJ (1970) Shear deformation in heterogeneous anisotropic plates. J Appl Mech 37:1031–1036

    MATH  Article  Google Scholar 

  82. 82.

    Mindlin RD (1951) Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. J Appl Mech 18:31–38

    MATH  Google Scholar 

  83. 83.

    Kirchhoff GR (1850) Uber das gleichgewicht und die bewegung einer elastischen Scheibe. Journal für die reine und angewandte Mathematik (Crelle’s Journal)

  84. 84.

    Kalita K, Shivakoti I, Ghadai RK (2017) Optimizing process parameters for laser beam micro-marking using a genetic algorithm and particle swarm optimization. Mater Manuf Process 32(10):1101–1108

    Article  Google Scholar 

  85. 85.

    Stehlík M, Střelec L, Thulin M (2014) On robust testing for normality in chemometrics. Chemometr Intell Lab Syst 130:98–108

    Article  Google Scholar 

  86. 86.

    Ragavendran U, Ghadai RK, Bhoi AK, Ramachandran M, Kalita K (2019) Sensitivity analysis and optimization of EDM process. Trans Can Soc Mech Eng 43(1):13–25

    Article  Google Scholar 

  87. 87.

    Shooshtari A, Razavi S (2010) A closed form solution for linear and nonlinear free vibrations of composite and fiber metal laminated rectangular plates. Compos Struct 92(11):2663–2675

    Article  Google Scholar 

  88. 88.

    Shivakoti I, Pradhan BB, Diyaley S, Ghadai RK, Kalita K (2017) Fuzzy TOPSIS-based selection of laser beam micro-marking process parameters. Arab J Sci Eng 42(11):4825–4831

    Article  Google Scholar 

  89. 89.

    Kalita K, Ragavendran U, Ramachandran M, Bhoi AK (2019) Weighted sum multi-objective optimization of skew composite laminates. Struct Eng Mech 69(1):21–31

    Google Scholar 

Download references

Acknowledgements

KK acknowledges the financial support from MHRD, India, through the award of Ph.D. Scholarship during the period of this research work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tanmoy Mukhopadhyay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kalita, K., Mukhopadhyay, T., Dey, P. et al. Genetic programming-assisted multi-scale optimization for multi-objective dynamic performance of laminated composites: the advantage of more elementary-level analyses. Neural Comput & Applic 32, 7969–7993 (2020). https://doi.org/10.1007/s00521-019-04280-z

Download citation

Keywords

  • Multi-scale optimization
  • Machine learning-based optimization
  • Genetic programming
  • Symbolic regression
  • d-Optimal design
  • Robust composite structures