An improved approach to fuzzy clustering based on FCM algorithm and extended VIKOR method

Abstract

Fuzzy C-means algorithm is a fuzzy partitional clustering algorithm. However, accuracy and easy to implement have converted this algorithm to the focus of research, and sensitivity to noisy data is an important and challenging issue in the algorithm, so that in recent years, many studies have been done to improve it. In this paper, a clustering algorithm named Fuzzy VIKOR C-means presented that by utilizing the extended VIKOR method based on targeted displacements in the centroids of the clusters seek to benefit from the flexibility property. Moreover, this algorithm also, considering Dunn’s index, means, and density measures as profit criteria, and DB index and the entropy measures as cost criteria, can reduce the sensitivity to noisy data and can enhance performance and quality of clusters. According to the simulation results and comparison with some recent well-known methods, this approach has an effective role in improving the assessment criteria.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Huang T, Hsu W (2013) Conjecturable knowledge discovery: a fuzzy clustering approach. Elsevier Trans Fuzzy Sets Syst 221:1–23

    MathSciNet  Article  Google Scholar 

  2. 2.

    Zadeh L (1965) Fuzzy sets. Elsevier Trans Inf Control 8(3):338–353

    Article  Google Scholar 

  3. 3.

    Suganya R, Shanthi R (2012) Fuzzy C- means algorithm—a review. Int J Sci Res Publ 2(11):1–3

    Google Scholar 

  4. 4.

    Izakian H, Abraham A (2011) Fuzzy C-means and fuzzy swarm for fuzzy clustering problem. Elsevier Trans Expert Syst Appl 38(3):1835–1838

    Article  Google Scholar 

  5. 5.

    Dunn J (1974) A fuzzy relative of the ISODATA process and its use in detecting compact well separated clusters. J Cybern 3(3):32–57

    MathSciNet  Article  Google Scholar 

  6. 6.

    Bezdek J (1981) Pattern recognition with fuzzy objective function algorithm. Plenum Press, New York

    Google Scholar 

  7. 7.

    Zhang Y, He J-H, Wang S-Q, Wang P (2016) A dye removal model with a fuzzy initial condition. Therm Sci 20(3):867–870

    Article  Google Scholar 

  8. 8.

    Wu Y, He J-H (2018) A remark on Samuelson’s variational principle in economics. Appl Math Lett 84:143–147

    MathSciNet  Article  Google Scholar 

  9. 9.

    Alawneh A, Al-Khaled K (2008) Numerical treatment of stochastic models used in statistical systems and financial markets. Comput Math Appl 56(10):2724–2732

    MathSciNet  Article  Google Scholar 

  10. 10.

    Ghaneai H, Hosseini M (2016) Solving differential-algebraic equations through variational iteration method with an auxiliary parameter. Appl Math Model 40(5–6):3991–4001

    MathSciNet  Article  Google Scholar 

  11. 11.

    Fritz H, Garcia-Escudero L (2013) Robust constrained fuzzy clustering. Elsevier Trans Inf Sci 245:38–52

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Sabzekar M, Naghibzadeh M (2013) Fuzzy c-means improvement using relaxed constraints support vector machines. Elsevier Trans Appl Soft Comput 13(2):881–890

    Article  Google Scholar 

  13. 13.

    Zarinbal M, Zarandi MF, Turksen I (2014) Relative entropy fuzzy c-means clustering. Elsevier Trans Inf Sci 260:74–97

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Kalhori MRN, Zarandi MF (2015) Interval type-2 credibilistic clustering for pattern recognition. Elsevier Trans Pattern Recognit 48(11):3652–3672

    Article  Google Scholar 

  15. 15.

    Golsefid SMM, Zarandi MF (2016) Multi-central general type-2 fuzzy clustering approach for pattern recognitions. Elsevier Trans Inf Sci 328:172–188

    MATH  Google Scholar 

  16. 16.

    Khanali H, Vaziri B (2016) A survey on clustering algorithms for partitioning method. Int J Comput Appl 155(4):20–25

    Google Scholar 

  17. 17.

    Tavana M, Mavi R, Santos-Arteaga F, Dous E (2016) An extended VIKOR method using stochastic data and subjective judgments. Comput Ind Eng 97:1–29

    Article  Google Scholar 

  18. 18.

    Macedo-Cruz A, Villegas-Romero I (2012) Unsupervised classification of aerial images based on the Otsu’s method. INTECH Open Access Publisher, London

    Google Scholar 

  19. 19.

    Sripada S (2011) Comparison of purity and entropy of k-means clustering and fuzzy c means clustering. Indian J Comput Sci Eng (IJCSE) 2(3):343–346

    Google Scholar 

  20. 20.

    Brun M, Sima C (2007) Model-based evaluation of clustering validation measures. Pattern Recognit 40(3):807–824

    Article  Google Scholar 

  21. 21.

    Halkidi M, Batistakis Y (2001) On clustering validation techniques. J Intell Inf Syst 17(2–3):107–145

    Article  Google Scholar 

  22. 22.

    Zaki M, Meira W Jr (2014) Data mining and analysis: fundamental concepts and algorithms. Cambridge University Press, New York

    Google Scholar 

  23. 23.

    Liu Y, Li Z, Xiong H (2013) Understanding and enhancement of internal clustering validation measures. IEEE Trans Cybern 43(3):982–994

    Article  Google Scholar 

  24. 24.

    Desgraupes B (2013) Clustering indices, vol 1. University of Paris Ouest-Lab Modal’X, pp 1–34

  25. 25.

    Asuncion A, Newman D (2015) [Online]. Available: http://www.ics.uci.edu/~mlearn/MLRepository.html. Accessed 28 March 2015

  26. 26.

    Rendon E, Abundez I, Arizmendi A (2011) Internal versus external cluster validation indexes. Int J Comput Commun 5(1):27–34

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hoda Khanali.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest associated with this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khanali, H., Vaziri, B. An improved approach to fuzzy clustering based on FCM algorithm and extended VIKOR method. Neural Comput & Applic 32, 473–484 (2020). https://doi.org/10.1007/s00521-019-04035-w

Download citation

Keywords

  • Fuzzy partition clustering
  • Cluster validation measures
  • Multiple criteria decision-making (MCDM) methods