Skip to main content
Log in

Prediction of permanent deformation in asphalt pavements using a novel symbiotic organisms search–least squares support vector regression

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The prediction of asphalt performance can be very important in terms of increasing service life and performance while saving energy and money. In this study, a new hybrid artificial intelligence (AI) system, SOS–LSSVR, has been proposed to predict the permanent deformation potential of asphalt pavement mixtures. SOS–LSSVR utilizes the symbiotic organisms search (SOS) and the least squares support vector regression (LSSVR), which are seen as a complementary system. The prediction model can be established from all input and output data pairs for LSSVR, while SOS optimizes the system’s tuning parameters. To avoid sampling bias and to partition the dataset into testing and training, a cross-validation technique was chosen. The results can be compared to those of previous studies and other predictive methods. Through the use of four error indicators, SOS–LSSVR accuracy was verified in predicting the permanent deformation behavior of an asphalt mixture. The present study demonstrates that the proposed AI system is a valuable decision-making tool for road designers. Additionally, the success of SOS–LSSVR in building an accurate prediction model suggests that the proposed self-optimized prediction framework has found an underlying pattern in the current database and thus can potentially be implemented in various disciplines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kaloush KE (2001) Simple performance test for permanent deformation of asphalt mixtures. Ph.D. thesis, Arizona State University

  2. Sousa JB, Craus J, Monismith C (1991) Summary report on permanent deformation in asphalt concrete. Strategic Highway Research Program (SHRP), National Research Council, Institute of Transportation Studies, University of California, Berkeley

  3. Liao S-H, Chu P-H, Hsiao P-Y (2012) Data mining techniques and applications—a decade review from 2000 to 2011. Expert Syst Appl 39(12):11303–11311. https://doi.org/10.1016/j.eswa.2012.02.063

    Article  Google Scholar 

  4. Cheng M-Y, Prayogo D (2014) Symbiotic organisms search: a new metaheuristic optimization algorithm. Comput Struct 139:98–112. https://doi.org/10.1016/j.compstruc.2014.03.007

    Article  Google Scholar 

  5. Cheng M-Y, Wibowo DK, Prayogo D, Roy AFV (2015) Predicting productivity loss caused by change orders using the evolutionary fuzzy support vector machine inference model. J Civ Eng Manag 21(7):881–892. https://doi.org/10.3846/13923730.2014.893922

    Article  Google Scholar 

  6. Hoang N-D, Tien Bui D, Liao K-W (2016) Groutability estimation of grouting processes with cement grouts using differential flower pollination optimized support vector machine. Appl Soft Comput 45:173–186. https://doi.org/10.1016/j.asoc.2016.04.031

    Article  Google Scholar 

  7. Cheng M-Y, Prayogo D, Ju Y-H, Wu Y-W, Sutanto S (2016) Optimizing mixture properties of biodiesel production using genetic algorithm-based evolutionary support vector machine. Int J Green Energy 13(15):1599–1607. https://doi.org/10.1080/15435075.2016.1206549

    Article  Google Scholar 

  8. Helmy T, Hossain MI, Adbulraheem A, Rahman SM, Hassan MR, Khoukhi A, Elshafei M (2017) Prediction of non-hydrocarbon gas components in separator by using hybrid computational intelligence models. Neural Comput Appl 28(4):635–649. https://doi.org/10.1007/s00521-015-2088-4

    Article  Google Scholar 

  9. Christopher WR, J. RC, Bausano J, Breakah T (2007) Testing of wisconsin asphalt mixtures for the forthcoming AASHTO 2002 mechanistic-empirical pavement design procedure. Wisconsin Highway Research Program

  10. Witczak MW, Kaloush KE, Pellinen T, El-Basyouny M, Von Quintus H (2002) Simple performance test for superpave mix design, vol 465. NCHRP Report

  11. Gandomi AH, Alavi AH, Mirzahosseini MR, Nejad FM (2011) Nonlinear genetic-based models for prediction of flow number of asphalt mixtures. J Mater Civ Eng 23(3):248–263. https://doi.org/10.1061/(asce)mt.1943-5533.0000154

    Article  Google Scholar 

  12. Alavi AH, Ameri M, Gandomi AH, Mirzahosseini MR (2011) Formulation of flow number of asphalt mixes using a hybrid computational method. Constr Build Mater 25(3):1338–1355. https://doi.org/10.1016/j.conbuildmat.2010.09.010

    Article  Google Scholar 

  13. Mirzahosseini MR, Aghaeifar A, Alavi AH, Gandomi AH, Seyednour R (2011) Permanent deformation analysis of asphalt mixtures using soft computing techniques. Expert Syst Appl 38(5):6081–6100. https://doi.org/10.1016/j.eswa.2010.11.002

    Article  Google Scholar 

  14. Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300. https://doi.org/10.1023/a:1018628609742

    Article  Google Scholar 

  15. Suykens JAK, Lukas L, Vandewalle J Sparse approximation using least squares support vector machines. In: The 2000 IEEE international symposium on circuits and systems, 2000. Proceedings, vol 752. ISCAS 2000 Geneva, pp 757–760. https://doi.org/10.1109/iscas.2000.856439

  16. Pham A-D, Hoang N-D, Nguyen Q-T (2015) Predicting compressive strength of high-performance concrete using metaheuristic-optimized least squares support vector regression. J Comput Civ Eng. https://doi.org/10.1061/(asce)cp.1943-5487.0000506

    Article  Google Scholar 

  17. Tran D-H, Cheng M-Y, Prayogo D (2016) A novel multiple objective symbiotic organisms search (MOSOS) for time–cost–labor utilization tradeoff problem. Knowl Based Syst 94:132–145. https://doi.org/10.1016/j.knosys.2015.11.016

    Article  Google Scholar 

  18. Tejani GG, Savsani VJ, Patel VK (2016) Adaptive symbiotic organisms search (SOS) algorithm for structural design optimization. J Comput Des Eng. https://doi.org/10.1016/j.jcde.2016.02.003

    Article  Google Scholar 

  19. Kamankesh H, Agelidis VG, Kavousi-Fard A (2016) Optimal scheduling of renewable micro-grids considering plug-in hybrid electric vehicle charging demand. Energy 100:285–297. https://doi.org/10.1016/j.energy.2016.01.063

    Article  Google Scholar 

  20. Duman S (2016) Symbiotic organisms search algorithm for optimal power flow problem based on valve-point effect and prohibited zones. Neural Comput Appl. https://doi.org/10.1007/s00521-016-2265-0

    Article  Google Scholar 

  21. Verma S, Saha S, Mukherjee V (2015) A novel symbiotic organisms search algorithm for congestion management in deregulated environment. J Exp Theor Artif Intell. https://doi.org/10.1080/0952813X.2015.1116141

    Article  Google Scholar 

  22. Kulkrni KS, Kim D-K, Sekar SK, Samui P (2011) Model of least square support vector machine (LSSVM) for prediction of fracture parameters of concrete. Int J Concr Struct Mater 5(1):29–33. https://doi.org/10.4334/ijcsm.2011.5.1.029

    Article  Google Scholar 

  23. Siddique N, Adeli H (2016) Brief history of natural sciences for nature-inspired computing in engineering. J Civ Eng Manag 22(3):287–301. https://doi.org/10.3846/13923730.2016.1157095

    Article  Google Scholar 

  24. Boussaïd I, Lepagnot J, Siarry P (2013) A survey on optimization metaheuristics. Inf Sci 237:82–117. https://doi.org/10.1016/j.ins.2013.02.041

    Article  MathSciNet  MATH  Google Scholar 

  25. Cheng M-Y, Chiu C-K, Chiu Y-F, Wu Y-W, Syu Z-L, Prayogo D, Lin C-H (2014) SOS optimization model for bridge life cycle risk evaluation and maintenance strategies. J Chin Inst Civ Hydraul Eng 26(4):293–308

    Google Scholar 

  26. Ayala HVH, Klein CE, Mariani VC, Coelho LDS (2017) Multiobjective symbiotic search algorithm approaches for electromagnetic optimization. IEEE Trans Magn 53(6):1–4. https://doi.org/10.1109/tmag.2017.2665350

    Article  Google Scholar 

  27. Panda A, Pani S (2016) A Symbiotic Organisms Search algorithm with adaptive penalty function to solve multi-objective constrained optimization problems. Appl Soft Comput 46:344–360. https://doi.org/10.1016/j.asoc.2016.04.030

    Article  Google Scholar 

  28. Yu VF, Redi AANP, Yang C-L, Ruskartina E, Santosa B (2017) Symbiotic organisms search and two solution representations for solving the capacitated vehicle routing problem. Appl Soft Comput 52:657–672. https://doi.org/10.1016/j.asoc.2016.10.006

    Article  Google Scholar 

  29. Cheng MY, Prayogo D, Tran DH (2016) Optimizing multiple-resources leveling in multiple projects using discrete symbiotic organisms search. J Comput Civil Eng 30(3):04015036. https://doi.org/10.1061/(asce)cp.1943-5487.0000512

    Article  Google Scholar 

  30. Kenan Dosoglu M, Guvenc U, Duman S, Sonmez Y, Tolga Kahraman H (2016) Symbiotic organisms search optimization algorithm for economic/emission dispatch problem in power systems. Neural Comput Appl. https://doi.org/10.1007/s00521-016-2481-7

    Article  Google Scholar 

  31. Verma M, Thirumalaiselvi A, Rajasankar J (2016) Kernel-based models for prediction of cement compressive strength. Neural Comput Appl. https://doi.org/10.1007/s00521-016-2419-0

    Article  Google Scholar 

  32. Cheng M-Y, Prayogo D, Wu Y-W (2014) Novel genetic algorithm-based evolutionary support vector machine for optimizing high-performance concrete mixture. J Comput Civ Eng 28(4):06014003. https://doi.org/10.1061/(asce)cp.1943-5487.0000347

    Article  Google Scholar 

  33. Hsu CW, Chang CC, Lin CJ (2003) A practical guide to support vector classification. https://www.citeulike-article-id:560445

  34. Bishop CM (2006) Pattern recognition and machine learning (information science and statistics). Springer, New York Inc

    MATH  Google Scholar 

  35. Mirzahosseini M, Najjar Y, Alavi A, Gandomi A (2015) Next-generation models for evaluation of the flow number of asphalt mixtures. Int J Geomech 15(6):04015009. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000483

    Article  Google Scholar 

  36. Chang C-C, Lin C-J (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):1–27. https://doi.org/10.1145/1961189.1961199

    Article  Google Scholar 

  37. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323(6088):533–536

    Article  Google Scholar 

  38. Cao M-T, Cheng M-Y, Wu Y-W (2015) Hybrid computational model for forecasting Taiwan construction cost index. J Constr Eng Manag 141(4):04014089. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000948

    Article  Google Scholar 

  39. Chou J-S, Ngo N-T (2016) Engineering strength of fiber-reinforced soil estimated by swarm intelligence optimized regression system. Neural Comput Appl. https://doi.org/10.1007/s00521-016-2739-0

    Article  Google Scholar 

  40. Tien Bui D, Pham BT, Nguyen QP, Hoang N-D (2016) Spatial prediction of rainfall-induced shallow landslides using hybrid integration approach of least-squares support vector machines and differential evolution optimization: a case study in Central Vietnam. Int J Digit Earth 9(11):1077–1097. https://doi.org/10.1080/17538947.2016.1169561

    Article  Google Scholar 

  41. Demuth H, Beale M, Hagan M (2008) Neural network toolbox 6: user’s guide. The MathWorks Inc, Natick

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doddy Prayogo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, MY., Prayogo, D. & Wu, YW. Prediction of permanent deformation in asphalt pavements using a novel symbiotic organisms search–least squares support vector regression. Neural Comput & Applic 31, 6261–6273 (2019). https://doi.org/10.1007/s00521-018-3426-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-3426-0

Keywords

Navigation