Prediction of permanent deformation in asphalt pavements using a novel symbiotic organisms search–least squares support vector regression

Original Article

Abstract

The prediction of asphalt performance can be very important in terms of increasing service life and performance while saving energy and money. In this study, a new hybrid artificial intelligence (AI) system, SOS–LSSVR, has been proposed to predict the permanent deformation potential of asphalt pavement mixtures. SOS–LSSVR utilizes the symbiotic organisms search (SOS) and the least squares support vector regression (LSSVR), which are seen as a complementary system. The prediction model can be established from all input and output data pairs for LSSVR, while SOS optimizes the system’s tuning parameters. To avoid sampling bias and to partition the dataset into testing and training, a cross-validation technique was chosen. The results can be compared to those of previous studies and other predictive methods. Through the use of four error indicators, SOS–LSSVR accuracy was verified in predicting the permanent deformation behavior of an asphalt mixture. The present study demonstrates that the proposed AI system is a valuable decision-making tool for road designers. Additionally, the success of SOS–LSSVR in building an accurate prediction model suggests that the proposed self-optimized prediction framework has found an underlying pattern in the current database and thus can potentially be implemented in various disciplines.

Keywords

Asphalt mixtures Artificial intelligence Permanent deformation Least squares support vector regression Symbiotic organisms search 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Kaloush KE (2001) Simple performance test for permanent deformation of asphalt mixtures. Ph.D. thesis, Arizona State UniversityGoogle Scholar
  2. 2.
    Sousa JB, Craus J, Monismith C (1991) Summary report on permanent deformation in asphalt concrete. Strategic Highway Research Program (SHRP), National Research Council, Institute of Transportation Studies, University of California, BerkeleyGoogle Scholar
  3. 3.
    Liao S-H, Chu P-H, Hsiao P-Y (2012) Data mining techniques and applications—a decade review from 2000 to 2011. Expert Syst Appl 39(12):11303–11311.  https://doi.org/10.1016/j.eswa.2012.02.063 CrossRefGoogle Scholar
  4. 4.
    Cheng M-Y, Prayogo D (2014) Symbiotic organisms search: a new metaheuristic optimization algorithm. Comput Struct 139:98–112.  https://doi.org/10.1016/j.compstruc.2014.03.007 CrossRefGoogle Scholar
  5. 5.
    Cheng M-Y, Wibowo DK, Prayogo D, Roy AFV (2015) Predicting productivity loss caused by change orders using the evolutionary fuzzy support vector machine inference model. J Civ Eng Manag 21(7):881–892.  https://doi.org/10.3846/13923730.2014.893922 CrossRefGoogle Scholar
  6. 6.
    Hoang N-D, Tien Bui D, Liao K-W (2016) Groutability estimation of grouting processes with cement grouts using differential flower pollination optimized support vector machine. Appl Soft Comput 45:173–186.  https://doi.org/10.1016/j.asoc.2016.04.031 CrossRefGoogle Scholar
  7. 7.
    Cheng M-Y, Prayogo D, Ju Y-H, Wu Y-W, Sutanto S (2016) Optimizing mixture properties of biodiesel production using genetic algorithm-based evolutionary support vector machine. Int J Green Energy 13(15):1599–1607.  https://doi.org/10.1080/15435075.2016.1206549 CrossRefGoogle Scholar
  8. 8.
    Helmy T, Hossain MI, Adbulraheem A, Rahman SM, Hassan MR, Khoukhi A, Elshafei M (2017) Prediction of non-hydrocarbon gas components in separator by using hybrid computational intelligence models. Neural Comput Appl 28(4):635–649.  https://doi.org/10.1007/s00521-015-2088-4 CrossRefGoogle Scholar
  9. 9.
    Christopher WR, J. RC, Bausano J, Breakah T (2007) Testing of wisconsin asphalt mixtures for the forthcoming AASHTO 2002 mechanistic-empirical pavement design procedure. Wisconsin Highway Research ProgramGoogle Scholar
  10. 10.
    Witczak MW, Kaloush KE, Pellinen T, El-Basyouny M, Von Quintus H (2002) Simple performance test for superpave mix design, vol 465. NCHRP ReportGoogle Scholar
  11. 11.
    Gandomi AH, Alavi AH, Mirzahosseini MR, Nejad FM (2011) Nonlinear genetic-based models for prediction of flow number of asphalt mixtures. J Mater Civ Eng 23(3):248–263.  https://doi.org/10.1061/(asce)mt.1943-5533.0000154 CrossRefGoogle Scholar
  12. 12.
    Alavi AH, Ameri M, Gandomi AH, Mirzahosseini MR (2011) Formulation of flow number of asphalt mixes using a hybrid computational method. Constr Build Mater 25(3):1338–1355.  https://doi.org/10.1016/j.conbuildmat.2010.09.010 CrossRefGoogle Scholar
  13. 13.
    Mirzahosseini MR, Aghaeifar A, Alavi AH, Gandomi AH, Seyednour R (2011) Permanent deformation analysis of asphalt mixtures using soft computing techniques. Expert Syst Appl 38(5):6081–6100.  https://doi.org/10.1016/j.eswa.2010.11.002 CrossRefGoogle Scholar
  14. 14.
    Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300.  https://doi.org/10.1023/a:1018628609742 CrossRefMATHGoogle Scholar
  15. 15.
    Suykens JAK, Lukas L, Vandewalle J Sparse approximation using least squares support vector machines. In: The 2000 IEEE international symposium on circuits and systems, 2000. Proceedings, vol 752. ISCAS 2000 Geneva, pp 757–760.  https://doi.org/10.1109/iscas.2000.856439
  16. 16.
    Pham A-D, Hoang N-D, Nguyen Q-T (2015) Predicting compressive strength of high-performance concrete using metaheuristic-optimized least squares support vector regression. J Comput Civ Eng.  https://doi.org/10.1061/(asce)cp.1943-5487.0000506 Google Scholar
  17. 17.
    Tran D-H, Cheng M-Y, Prayogo D (2016) A novel multiple objective symbiotic organisms search (MOSOS) for time–cost–labor utilization tradeoff problem. Knowl Based Syst 94:132–145.  https://doi.org/10.1016/j.knosys.2015.11.016 CrossRefGoogle Scholar
  18. 18.
    Tejani GG, Savsani VJ, Patel VK (2016) Adaptive symbiotic organisms search (SOS) algorithm for structural design optimization. J Comput Des Eng.  https://doi.org/10.1016/j.jcde.2016.02.003 Google Scholar
  19. 19.
    Kamankesh H, Agelidis VG, Kavousi-Fard A (2016) Optimal scheduling of renewable micro-grids considering plug-in hybrid electric vehicle charging demand. Energy 100:285–297.  https://doi.org/10.1016/j.energy.2016.01.063 CrossRefGoogle Scholar
  20. 20.
    Duman S (2016) Symbiotic organisms search algorithm for optimal power flow problem based on valve-point effect and prohibited zones. Neural Comput Appl.  https://doi.org/10.1007/s00521-016-2265-0 Google Scholar
  21. 21.
    Verma S, Saha S, Mukherjee V (2015) A novel symbiotic organisms search algorithm for congestion management in deregulated environment. J Exp Theor Artif Intell.  https://doi.org/10.1080/0952813X.2015.1116141 Google Scholar
  22. 22.
    Kulkrni KS, Kim D-K, Sekar SK, Samui P (2011) Model of least square support vector machine (LSSVM) for prediction of fracture parameters of concrete. Int J Concr Struct Mater 5(1):29–33.  https://doi.org/10.4334/ijcsm.2011.5.1.029 CrossRefGoogle Scholar
  23. 23.
    Siddique N, Adeli H (2016) Brief history of natural sciences for nature-inspired computing in engineering. J Civ Eng Manag 22(3):287–301.  https://doi.org/10.3846/13923730.2016.1157095 CrossRefGoogle Scholar
  24. 24.
    Boussaïd I, Lepagnot J, Siarry P (2013) A survey on optimization metaheuristics. Inf Sci 237:82–117.  https://doi.org/10.1016/j.ins.2013.02.041 MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Cheng M-Y, Chiu C-K, Chiu Y-F, Wu Y-W, Syu Z-L, Prayogo D, Lin C-H (2014) SOS optimization model for bridge life cycle risk evaluation and maintenance strategies. J Chin Inst Civ Hydraul Eng 26(4):293–308Google Scholar
  26. 26.
    Ayala HVH, Klein CE, Mariani VC, Coelho LDS (2017) Multiobjective symbiotic search algorithm approaches for electromagnetic optimization. IEEE Trans Magn 53(6):1–4.  https://doi.org/10.1109/tmag.2017.2665350 CrossRefGoogle Scholar
  27. 27.
    Panda A, Pani S (2016) A Symbiotic Organisms Search algorithm with adaptive penalty function to solve multi-objective constrained optimization problems. Appl Soft Comput 46:344–360.  https://doi.org/10.1016/j.asoc.2016.04.030 CrossRefGoogle Scholar
  28. 28.
    Yu VF, Redi AANP, Yang C-L, Ruskartina E, Santosa B (2017) Symbiotic organisms search and two solution representations for solving the capacitated vehicle routing problem. Appl Soft Comput 52:657–672.  https://doi.org/10.1016/j.asoc.2016.10.006 CrossRefGoogle Scholar
  29. 29.
    Cheng MY, Prayogo D, Tran DH (2016) Optimizing multiple-resources leveling in multiple projects using discrete symbiotic organisms search. J Comput Civil Eng 30(3):04015036.  https://doi.org/10.1061/(asce)cp.1943-5487.0000512 Google Scholar
  30. 30.
    Kenan Dosoglu M, Guvenc U, Duman S, Sonmez Y, Tolga Kahraman H (2016) Symbiotic organisms search optimization algorithm for economic/emission dispatch problem in power systems. Neural Comput Appl.  https://doi.org/10.1007/s00521-016-2481-7 Google Scholar
  31. 31.
    Verma M, Thirumalaiselvi A, Rajasankar J (2016) Kernel-based models for prediction of cement compressive strength. Neural Comput Appl.  https://doi.org/10.1007/s00521-016-2419-0 Google Scholar
  32. 32.
    Cheng M-Y, Prayogo D, Wu Y-W (2014) Novel genetic algorithm-based evolutionary support vector machine for optimizing high-performance concrete mixture. J Comput Civ Eng 28(4):06014003.  https://doi.org/10.1061/(asce)cp.1943-5487.0000347 CrossRefGoogle Scholar
  33. 33.
    Hsu CW, Chang CC, Lin CJ (2003) A practical guide to support vector classification. https://www.citeulike-article-id:560445
  34. 34.
    Bishop CM (2006) Pattern recognition and machine learning (information science and statistics). Springer, New York IncMATHGoogle Scholar
  35. 35.
    Mirzahosseini M, Najjar Y, Alavi A, Gandomi A (2015) Next-generation models for evaluation of the flow number of asphalt mixtures. Int J Geomech 15(6):04015009.  https://doi.org/10.1061/(ASCE)GM.1943-5622.0000483 CrossRefGoogle Scholar
  36. 36.
    Chang C-C, Lin C-J (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):1–27.  https://doi.org/10.1145/1961189.1961199 CrossRefGoogle Scholar
  37. 37.
    Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323(6088):533–536CrossRefMATHGoogle Scholar
  38. 38.
    Cao M-T, Cheng M-Y, Wu Y-W (2015) Hybrid computational model for forecasting Taiwan construction cost index. J Constr Eng Manag 141(4):04014089.  https://doi.org/10.1061/(ASCE)CO.1943-7862.0000948 CrossRefGoogle Scholar
  39. 39.
    Chou J-S, Ngo N-T (2016) Engineering strength of fiber-reinforced soil estimated by swarm intelligence optimized regression system. Neural Comput Appl.  https://doi.org/10.1007/s00521-016-2739-0 Google Scholar
  40. 40.
    Tien Bui D, Pham BT, Nguyen QP, Hoang N-D (2016) Spatial prediction of rainfall-induced shallow landslides using hybrid integration approach of least-squares support vector machines and differential evolution optimization: a case study in Central Vietnam. Int J Digit Earth 9(11):1077–1097.  https://doi.org/10.1080/17538947.2016.1169561 CrossRefGoogle Scholar
  41. 41.
    Demuth H, Beale M, Hagan M (2008) Neural network toolbox 6: user’s guide. The MathWorks Inc, NatickGoogle Scholar

Copyright information

© The Natural Computing Applications Forum 2018

Authors and Affiliations

  1. 1.Department of Civil and Construction EngineeringNational Taiwan University of Science and TechnologyTaipeiTaiwan, ROC
  2. 2.Department of Civil EngineeringPetra Christian UniversitySurabayaIndonesia

Personalised recommendations