Advertisement

Flower pollination–feedforward neural network for load flow forecasting in smart distribution grid

  • Gaddafi Sani Shehu
  • Nurettin Çetinkaya
Original Article
  • 102 Downloads

Abstract

Nature-inspired population-based metaheuristic flower pollination algorithm is proposed in solving load flow forecasting problem in smart distribution grid environment. The efficient approach involves training a feedforward neural network (FNN) with a new flower pollination algorithm (FPA). The idea is to perform short-term load flow forecasting in smart distribution network, thus maintaining system security due to intermittency of renewable energy penetration and power flow demand. Application of optimization algorithms such as FPA in training neural network improves accuracy, overcomes generalization ability of neural network, requires less data and prevents premature convergence problem in artificial intelligence solutions due to nonlinearity of parameters. The real load flow data are collected through distribution management system of Konya Organized Industrial Zone. The result obtained indicates strong improvement in error reduction using flower pollination optimization algorithm in training FNN for short-term load flow forecasting in smart distribution grid; the model is compared against FNN model and efficient support vector regression.

Keywords

Flower pollination algorithm Feedforward neural network Load flow forecasting Smart distribution grid 

Notes

Acknowledgements

The authors acknowledge the effort of Konya Organized Industrial Zone Directorate for providing access to system data, and support of Scientific and Technological Research Council of Turkey (TUBITAK)

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Maria LT, Michael LA (2016) A review of the development of smart grid technologies. Renew Sustain Energy Rev 59:710–725.  https://doi.org/10.1016/j.rser.2016.01.011 CrossRefGoogle Scholar
  2. 2.
    Borges CE, Penya YK, Fernández I (2013) Evaluating combined load forecasting in large power systems and smart grids. IEEE Trans Ind Inf 9(3):157–1570.  https://doi.org/10.1109/TII.2012.2219063 CrossRefGoogle Scholar
  3. 3.
    De Felice M, Xin Y (2011) Short-term load forecasting with neural network ensembles: a comparative study. IEEE Comput Intell Mag 6(3):47–56.  https://doi.org/10.1109/MCI.2011.941590 CrossRefGoogle Scholar
  4. 4.
    Asar A, Hassnain SR, Khattack AU (2005) A multi-agent approach to short term load forecasting problem. Int J Intell Control Syst 10(1):52–59Google Scholar
  5. 5.
    Swaroop R, Abdulqader HA (2012) Load forecasting for power system planning and operation using artificial neural network et al Batinah region Oman. J Eng Sci Technol 7(4):498–504Google Scholar
  6. 6.
    Duan P, Xie K, Guo T, Huang X (2011) Short-term load forecasting for electric power system using the PSO-SVR and FCM clustering techniques. Energies 4:173–184CrossRefGoogle Scholar
  7. 7.
    Bo-Juen C, Ming-Wei C, Chih-Jen L (2004) Load forecasting using support vector machines: a study on EUNITE competition 2001. IEEE Trans Power Syst 19(4):1821–1830CrossRefGoogle Scholar
  8. 8.
    Tanidir O, Tor OB (2015) Accuracy of ANN based day-ahead load forecasting in Turkish power system: degrading and improving factors. Neural Netw World 4(15):443–445.  https://doi.org/10.14311/NNW.2015.25.02 CrossRefGoogle Scholar
  9. 9.
    Heiko H, Silja MN, Stefan P (2009) Electric load forecasting methods: tools for decision making. Eur J Oper Res 199(3):902–907CrossRefzbMATHGoogle Scholar
  10. 10.
    Peharda D, Hebel Z and Delimar M (2004) Forecasting data for load flow. In: Proceedings of the 12th IEEE mediterranean electrotechnical conference (IEEE Cat. No. 04CH37521), vol 3, pp 855–858.  https://doi.org/10.1109/melcon.2004.1348082
  11. 11.
    Ding N, Benoit C, Foggia G, Bésanger Y, Wurtz F (2016) Neural network-based model design for short-term load forecast in distribution systems. IEEE Trans Power Syst 31(1):72–81CrossRefGoogle Scholar
  12. 12.
    Sinha AK, Mandal JK (1999) Hierarchical dynamic state estimator using ANN-based dynamic load prediction. IEE Proc Gener Transm Distrib 146(6):541–549CrossRefGoogle Scholar
  13. 13.
    Srinivasan D, Chang CS, Liew AC (1995) Demand forecasting using fuzzy neural computation with special emphasis on weekend and public holiday forecasting. IEEE Trans Power Syst 10(4):1897–1903CrossRefGoogle Scholar
  14. 14.
    Ling SH, Leung FH, Lam FHK, Lee YS, Tam PKS (2003) A novel genetic-algorithm-based neural network for short-term load forecasting. IEEE Trans Ind Electron 50(4):793–799CrossRefGoogle Scholar
  15. 15.
    AlRashidi MR, El-Naggar KM (2010) Long term electric load forecasting based on particle swarm optimization. Appl Energy 87(1):320–326CrossRefGoogle Scholar
  16. 16.
    Abdollah K, Haidar S, Fatemeh M (2014) A new hybrid modified firefly algorithm and support vector regression model for accurate short term load forecasting. Expert Syst Appl 41(13):6047–6056.  https://doi.org/10.1016/j.eswa.2014.03.053 CrossRefGoogle Scholar
  17. 17.
    Liye X, Wei S, Tulu L, Chen WA (2016) Combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting. Appl Energy 167:135–153CrossRefGoogle Scholar
  18. 18.
    Jiang H, Zhang Y, Muljadi E, Zhang J, Gao W (2016) A short-term and high-resolution distribution system load forecasting approach using support vector regression with hybrid parameters optimization. IEEE Trans Smart Grid 99:1.  https://doi.org/10.1109/tsg.2016.2628061 CrossRefGoogle Scholar
  19. 19.
    Pan L, Feng X, Sang F et al (2017) An improved back propagation neural network based on complexity decomposition technology and modified flower pollination optimization for short-term load forecasting. Neural Comput Appl.  https://doi.org/10.1007/s00521-017-3222-2 Google Scholar
  20. 20.
    Lei J, Jin T, Hao J et al (2017) Short-term load forecasting with clustering–regression model in distributed cluster. Cluster Comput.  https://doi.org/10.1007/s10586-017-1198-4 Google Scholar
  21. 21.
    Sun X, Ouyang Z, Yue D (2017) Short-term load forecasting model based on multi-label and BPNN. In: Fei M., Ma S., Li X, Sun X, Jia L, Su Z. (eds) Advanced computational methods in life system modeling and simulation. LSMS 2017, ICSEE 2017, communications in computer and information science, vol 761. Springer, Singapore, pp 264–272.  https://doi.org/10.1007/978-981-10-6370-1_26
  22. 22.
    Kong W, Dong ZY, Hill DJ, Luo F, Xu Y (2017) Short-term residential load forecasting based on resident behaviour learning. IEEE Trans Power Syst 99:1.  https://doi.org/10.1109/tpwrs.2017.2688178 Google Scholar
  23. 23.
    Cetinkaya N (2016) A new mathematical approach and heuristic methods for load forecasting in smart grid. In: 12th International conference on natural computation, fuzzy systems and knowledge discovery, Changsha, pp 1103–1107.  https://doi.org/10.1109/fskd.2016.7603332
  24. 24.
    Awad M, Khanna R (2015) Support vector regression. In: Efficient learning machines. Apress, Berkeley, pp 67–80.  https://doi.org/10.1007/978-1-4302-5990-9_4
  25. 25.
    Lee Y, Wen-Feng H, Chien-Ming H (2005) e-SSVR: a smooth support vector machine for e-Insensitive Regression. IEEE Trans Knowl Data Eng 17(5):678–685CrossRefGoogle Scholar
  26. 26.
    Vrablecová P et al (2017) Smart grid load forecasting using online support vector regression. Comput Electr Eng.  https://doi.org/10.1016/j.compeleceng.2017.07.006 Google Scholar
  27. 27.
    YouLong Y et al (2016) An incremental electric load forecasting model based on support vector regression. Energy 113:796–808.  https://doi.org/10.1016/j.energy.2016.07.092 CrossRefGoogle Scholar
  28. 28.
    Sapankevych N, Sankar R (2009) Time series prediction using support vector machines: a survey. IEEE Comput Intell Mag 4:24–38.  https://doi.org/10.1109/MCI.2009.932254 CrossRefGoogle Scholar
  29. 29.
    Bao Y, Xiong T, Hu Z (2014) Multi-step-ahead time series prediction using multiple-output support vector regression. Neurocomputing 129:482–493.  https://doi.org/10.1016/j.neucom.2013.09.010 CrossRefGoogle Scholar
  30. 30.
    Ceperic E, Ceperic V, Baric A (2013) A strategy for short-term load forecasting by support vector regression machines. IEEE Trans Power Syst 28(4):4356–4364.  https://doi.org/10.1109/TPWRS.2013.2269803 CrossRefGoogle Scholar
  31. 31.
    Pellegrini M (2015) Short-term load demand forecasting in smart grids using support vector regression. In: IEEE 1st international forum on research and technologies for society and industry leveraging a better tomorrow (RTSI), Turin, pp 264–268.  https://doi.org/10.1109/rtsi.2015.732510
  32. 32.
    Yang XS, (2012) Flower pollination algorithm for global optimization. In: Unconventional computation and natural computation 2012. Lecture notes in computer science, vol 7445, pp 240–249Google Scholar
  33. 33.
    Yang XS (2014) Nature-inspired optimization algorithms, 1st edn. Elsevier, USAzbMATHGoogle Scholar
  34. 34.
    Yang XS (2010) Nature-inspired metaheuristic algorithms. University of Cambridge, CambridgeGoogle Scholar
  35. 35.
    Yang XS, Deb S (2010) Engineering optimization by cuckoo search. Int J Math Model Numer Optim 1(4):330–343zbMATHGoogle Scholar
  36. 36.
    Eiben AE, Smit SK (2011) Parameter tuning for configuring and analysing evolutionary algorithms. Swarm Evol Comput 1(1):19–31CrossRefGoogle Scholar
  37. 37.
    Yang XS, Karamanoglu M, Xingshi H (2013) Multi-objective flower algorithm for optimization. Proc Comput Sci 18:861–868CrossRefGoogle Scholar
  38. 38.
    Haruna H et al (2015) A review of the applications of bio-inspired flower pollination algorithm. Proc Comput Sci 62:435–441.  https://doi.org/10.1016/j.procs.2015.08.438 CrossRefGoogle Scholar
  39. 39.
    Kayabekir AE, Bekdaş G, Nigdeli SM, Yang XS (2018) A Comprehensive review of the flower pollination algorithm for solving engineering problems. In: Yang XS (ed) Nature-inspired algorithms and applied optimization. Studies in computational intelligence, vol 744. Springer, Cham, pp 171–188.  https://doi.org/10.1007/978-3-319-67669-2_8 CrossRefGoogle Scholar
  40. 40.
    Xu S, Wang Y, Liu X (2017) Parameter estimation for chaotic systems via a hybrid flower pollination algorithm. Neural Comput Appl.  https://doi.org/10.1007/s00521-017-2890-2 Google Scholar
  41. 41.
    Rohit S, Urvinder S (2017) Application of mutation operators to flower pollination algorithm. Expert Syst Appl 79:112–129.  https://doi.org/10.1016/j.eswa.2017.02.035 CrossRefGoogle Scholar
  42. 42.
    Amer D (2015) On the performances of the flower pollination algorithm: qualitative and quantitative analyses. Appl Soft Comput 34:349–371.  https://doi.org/10.1016/j.asoc.2015.05.015 CrossRefGoogle Scholar
  43. 43.
    Alyasseri ZAA, Khader AT, Al-Betar MA, Awadallah MA, Yang XS (2018) Variants of the flower pollination algorithm: a review. In: Yang XS (ed) Nature-inspired algorithms and applied optimization. Studies in computational intelligence, vol 744. Springer, Cham, pp 91–118.  https://doi.org/10.1007/978-3-319-67669-2_5 CrossRefGoogle Scholar
  44. 44.
    Hornik K (1991) Approximation capabilities of multilayer feedforward networks. Neural Netw 4(2):251–257MathSciNetCrossRefGoogle Scholar
  45. 45.
    Claudio C, Giuseppina A, Francesco G, Roberto M (2016) Heuristic techniques to optimize neural network architecture in manufacturing applications. Neural Comput Appl 27:2001–2015CrossRefGoogle Scholar
  46. 46.
    Varun KO, Ajith A, Václav S (2017) Metaheuristic design of feedforward neural network: a review of two decades of research. Eng Appl Artif Intell 60:97–116CrossRefGoogle Scholar
  47. 47.
    Zhang JR, Zhang J, Lock TM, Lyu MR (2007) A hybrid particle swarm optimization–back propagation algorithm for feedforward neural network training. Appl Math Comput 128:1026–1037zbMATHGoogle Scholar
  48. 48.
    Seyed AM, Hashim SZM, Hossein MS (2012) Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm. Appl Math Comput 218(22):11125–11137MathSciNetzbMATHGoogle Scholar
  49. 49.
    Hecht-Nielsen R (1987) Kolmogorov’s mapping neural network existence theorem. In: Proceedings of the international conference on neural networks. IEEE Press, New York, pp 11–13Google Scholar

Copyright information

© The Natural Computing Applications Forum 2018

Authors and Affiliations

  1. 1.Graduate School of Natural and Applied ScienceSelçuk UniversitySelçukluTurkey
  2. 2.Electrical and Electronics Engineering DepartmentSelçuk UniversitySelçukluTurkey

Personalised recommendations