Skip to main content
Log in

A developed system based on nature-inspired algorithms for DNA motif finding process

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, recent algorithms are suggested to repair the issue of motif finding. The proposed algorithms are cuckoo search, modified cuckoo search and finally a hybrid of gravitational search and particle swarm optimization algorithm. Motif finding is the technique of handling expressive motifs successfully in huge DNA sequences. DNA motif finding is important because it acts as a significant function in understanding the approach of gene regulation. Recent results of existing motifs finding programs display low accuracy and can not be used to find motifs in different types of datasets. Practical tests are implemented first on synthetic datasets and then on benchmark real datasets that are based on nature-inspired algorithms. The results revealed that the hybridization of gravitational search algorithm and particle swarm algorithms provides higher precision and recall values and provides average enhancement of F-score up to 0.24, compared to other existing algorithms and tools, and also that cuckoo search and modified cuckoo search have been able to successfully locate motifs in DNA sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Das Mk and Dai HK (2007) A survey of DNA motif finding algorithms. BMC Bioinfor 18(7):1

    Google Scholar 

  2. Wei W, Yu X-D (2007) Comparative analysis of regulatory motif discovery tools for transcription factor binding sites. Genom Proteom Bioinform 5(2):131–142

    Article  MathSciNet  Google Scholar 

  3. Li N, Tompa M (2006) Analysis of computational approaches for motif discovery. Algorithms Mol Biol 1(1):1

    Article  Google Scholar 

  4. Brambilla M (2013) Swarm robotics: a review from the swarm engineering perspective. Swarm Intell 7(1):1–41

    Article  MathSciNet  Google Scholar 

  5. Karaboga D et al (2014) A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif Intell Rev 42(1):21–57

    Article  Google Scholar 

  6. Dadhich A et al (2014) Swarm intelligence based linear cryptanalysis of four-round data encryption standard algorithm. In: 2014 International conference on issues and challenges in intelligent computing techniques (ICICT)

  7. D’haeseleer P (2006) What are DNA sequence motifs? Nat Biotechnol 24(4):423–425

    Article  Google Scholar 

  8. Seeman NC (2003) DNA in a material world. Nature 421(6921):427–431

    Article  MathSciNet  Google Scholar 

  9. Chawla M, Duhan M (2014) Applications of recent metaheuristics optimisation algorithms in biomedical engineering: a review. Int J Biomed Eng Technol 16(3):268–278

    Article  Google Scholar 

  10. Ding J, Liu J, Chowdhury KR, Zhang W, Hu Q, Lei J (2014) A particle swarm optimization using local stochastic search and enhancing diversity for continuous optimization. Neurocomputing 137:261–267

    Article  Google Scholar 

  11. Gong M-G, Cai Q, Chen X-W, Ma L-J (2014) Complex network clustering by multiobjective discrete particle swarm optimization based on decomposition. In: IEEE Transactions on evolutionary computation vol 18(1), pp. 82–97

    Article  Google Scholar 

  12. Ouaaraba A, Ahioda B, Yang XS (2014) Discrete cuckoo search algorithm for the travelling salesman problem. Neural Comput Appl 24(7–8):1659–1669

    Article  Google Scholar 

  13. Hamdy M et al (2006) BIOINFTool: Bioinformatics and sequence data analysis in molecular biology using Matlab, Cairo

  14. Eskin E, Pevzner PA (2002) Finding composite regulatory patterns in DNA sequences. Bioinformatics 18:S354–S363

    Article  Google Scholar 

  15. Regnier M, Denis A (2004) Rare events and conditional events on random strings. Discrete Math Theor C 6:191–214

    MathSciNet  MATH  Google Scholar 

  16. Sinha S, Tompa M (2003) YMF: a program for discovery of novel transcription factor binding sites by statistical overrepresentation. Nucleic Acids Res 31(13):3586–3588

    Article  Google Scholar 

  17. Mauri G, Pesole G (2004) Weeder Web: discovery of transcription factor binding sites in a set of sequences from co-regulated genes. Nucleic Acids Res 32:W199–W203

    Article  Google Scholar 

  18. Mariño-Ramírez L, Tharakaraman K, JL Spouge, Landsman D (2009) pp 263–276. doi: https://doi.org/10.1007/978-1-59745-251-9_13

    Google Scholar 

  19. Bailey TL, Elkan C (1995) Unsupervised learning of multiple motifs in biopolymers using expectation maximization. Machine Learn 21(1–2):51–80

    Google Scholar 

  20. Roth FP et al (1998) Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nature biotechnology, nature publishing, US, vol 16, pp 939–945

  21. Vijayvargiya S, Shukla P (2011) Identification of transcription factor binding sites in biological sequences using genetic algorithm. Int J Res Rev Comput Sci 2(2):14

    Google Scholar 

  22. Gutierrez JB et al (2015) A genetic algorithm for motif finding based on statistical significance. In: International conference on bioinformatics and biomedical engineering

  23. Reddy US et al (2013) A particle swarm optimization solution for challenging planted(l, d)-Motif problem

  24. Lei C, Ruan J (2010) A particle swarm optimization-based algorithm for finding gapped motifs. BioData Min 3(9):1

    Google Scholar 

  25. Hu J (2005) Limitations and potentials of current motif discovery algorithms. Nucleic Acids Res 33(15):4899–4913

    Article  Google Scholar 

  26. Yang. XS, Deb S (2009) Cuckoo search via Lévy flights. In IEEE

  27. Bhargava V (2013) Cuckoo search: a new nature-inspired optimization method for phase equilibrium calculations. Fluid Phase Equilibria 337:191–200

    Article  Google Scholar 

  28. Brajevic I et al (2012) Multilevel image thresholding selection based on the cuckoo search algorithm

  29. Chandrasekaran K, Simon SP (2012) Multi-objective scheduling problem: Hybrid approach using fuzzy assisted cuckoo search algorithm. Swarm and Evolutionary Computation 5:1–16

    Article  Google Scholar 

  30. Bulatović R (2013) Cuckoo search algorithm: a metaheuristic approach to solving the problem of optimum synthesis of a six-bar double dwell linkage. Mech Mach Theory 61:1–13

    Article  Google Scholar 

  31. Civicioglu P, Besdok E (2013) A conceptual comparison of the Cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms. Artif Intell Rev 39(4):315–346

    Article  Google Scholar 

  32. Guerrero M (2015) Cuckoo search via Lévy flights and a comparison with genetic algorithms, fuzzy logic augmentation of nature-inspired optimization. Metaheuristics Studies Comput Intell 574:91–103

    Google Scholar 

  33. Zheng H, Zhou Y (2012) A novel cuckoo search optimization algorithm based on gauss distribution. J Comput Inf Syst 8:4193–4200

    Google Scholar 

  34. Khan K, Sahai A (2013) Neural-based cuckoo search of employee health and safety(hs). Int J Intell Syst Appl (IJISA) 5(2):76–83

    Google Scholar 

  35. Zhang Y (2012) Modifed adaptive cuckoo search (macs) algorithm and formal description for global optimisation. Int J Comput Appl Technol 44(2):73–79

    Article  Google Scholar 

  36. Yang XS, Deb S (2010) Engineering optimization by cuckoo search. Int J Math Model Numer Optim 1(4):330–343

    MATH  Google Scholar 

  37. Kennedy J (1995) Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, Perth, Australia, pp 1942–1948

  38. Eberhart R, Kennedy JA (1995) new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science, Nagoya, Japan, p 39–43

  39. Clerc M (2001) Discrete particle swarm optimization

  40. Agrafiotis DK, Cedeno W (2002) Feature selection for structure-activity correlation using binary particle swarms. J Med Chem 45:1098–1107

    Article  Google Scholar 

  41. Tawab AMA (2014) Efficient Multi-feature PSO for Fast Gray level object-tracking. Appl Soft Comput Elsevier 14:317–337

    Article  Google Scholar 

  42. Abdelhalim MB, Habib SD (2009) Particle swarm optimization for HW/SW partitioning. In: Lazinica A (Ed) Particle Swarm Optimization. Tech Education and Publishing, pp 49–76

  43. Rashedi E (2009) GSA A Gravitational Search Algorithm. Inf Sci 179(13):2232–2248

    Article  Google Scholar 

  44. Sinaie S (2010) Solving shortest path problem using gravitational search algorithm and neural networks

  45. Zhang Y (2012) Immune gravitation inspired optimization algorithm advanced intelligent computing. In: Huang D-S, Gan Y, Bevilacqua V, Figueroa J (eds). Springer, Berlin/Heidelberg, vol 6838, pp 178–185

  46. Adami C (2004) Information theory in molecular biology. Phys Life Rev 1:3–22

    Article  Google Scholar 

  47. Pevzner PA, Sze SH (2006) Combinatorial approaches to finding subtle signals in DNA sequences

  48. Favorov AV, Frith MC, Fu Y, Kent WJ et al (2005) Assessing computational tools for the discovery of transcription factor binding sites. Nat. Biotechnol 23:137–144

    Article  Google Scholar 

  49. Chan TM (2007) TFBS identification by position and consensus-led genetic algorithm with local filtering. In: GECCO’07: proceedings of the 2007 conference on genetic and evolutionary computation. ACM, London, England

  50. Mirjalili S, Hashim SZM (2010) A new hybrid PSOGSA algorithm for function optimization. In: 2010 international conference on computer and information application (ICCIA), Tianjin, China

  51. Mirjalili S, Lewis A (2014) Adaptive gbest-guided gravitational search algorithm. Neural Comput Appl 25(7–8):1569–1584. https://link.springer.com/journal/521/25/7/page/1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mai S. Mabrouk.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mabrouk, M.S., Abdelhalim, M.B. & Elewa, E.S. A developed system based on nature-inspired algorithms for DNA motif finding process. Neural Comput & Applic 30, 2059–2069 (2018). https://doi.org/10.1007/s00521-018-3398-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-3398-0

Keywords

Navigation