Skip to main content

Advertisement

Log in

FuSSFFra, a fuzzy semi-supervised forecasting framework: the case of the air pollution in Athens

  • S.I. : EANN 2016
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Mining hidden knowledge from available datasets is an extremely time-consuming and demanding process, especially in our era with the vast volume of high-complexity data. Additionally, validation of results requires the adoption of appropriate multifactor criteria, exhaustive testing and advanced error measurement techniques. This paper proposes a novel Hybrid Fuzzy Semi-Supervised Forecasting Framework. It combines fuzzy logic, semi-supervised clustering and semi-supervised classification in order to model Big Data sets in a faster, simpler and more essential manner. Its advantages are clearly shown and discussed in the paper. It uses as few pre-classified data as possible while providing a simple method of safe process validation. This innovative approach is applied herein to effectively model the air quality of Athens city. More specifically, it manages to forecast extreme air pollutants’ values and to explore the parameters that affect their concentration. Also it builds a correlation between pollution and general climatic conditions. Overall, it correlates the built model with the malfunctions caused to the city life by this serious environmental problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Education Research Centre of Greece. http://www.kee.gr/perivallontiki/teacher6_4.html. Accessed 1 Feb 2017

  2. Bougoudis I, Iliadis L, Papaleonidas A (2014) Fuzzy inference ANN ensembles for air pollutants modeling in a major urban area: the case of Athens. Eng Appl Neural Netw Commun Comput Inf Sci 459:1–14. doi:10.1007/978-3-319-11071-4_1

    Google Scholar 

  3. Iliadis L, Bougoudis L, Spartalis S (2014) Comparison of self organizing maps clustering with supervised classification for air pollution data sets. Proc AIAI 436:424–435. doi:10.1007/978-3-662-44654-6_42

    Google Scholar 

  4. Bougoudis I, Demertzis K, Iliadis L (2016) Fast and low cost prediction of extreme air pollution values with hybrid unsupervised learning. Integr Comput Aided Eng 23(2):115–127. doi:10.3233/ICA-150505

    Article  Google Scholar 

  5. Bougoudis I, Demertzis K, Iliadis L, Anezakis VD, Papaleonidas A (2016) Semi-supervised hybrid modeling of atmospheric pollution in urban centers. Commun Comput Inf Sci 629:51–63

    Google Scholar 

  6. Bougoudis I, Demertzis K, Iliadis L (2016) HISYCOL a hybrid computational intelligence system for combined machine learning: the case of air pollution modeling in Athens. EANN Neural Comput Appl 27:1191–1206. doi:10.1007/s00521-015-1927-7

    Article  Google Scholar 

  7. Krithara A, Amini MR, Renders JM, Goutte C (2008) Semi-supervised document classification with a mislabeling error model. In: 30th European conference on IR research, ECIR 2008, advances in information retrieval, lecture notes in computer science, 4956:370–381. doi:10.1007/978-3-540-78646-7_34

  8. Ashfaq RAR, Wang XZ, Huang JZ, Abbas H, He YL (2017) Fuzziness based semi-supervised learning approach for intrusion detection system. Inf Sci 378:484–497. doi:10.1016/j.ins.2016.04.019

    Article  Google Scholar 

  9. Yan Y, Chen L (2011) Label-based semi-supervised fuzzy co-clustering for document categoraization. In: 8th international conference on information, communications and signal processing, (ICICS) pp 1–5. doi:10.1109/ICICS.2011.6173605

  10. Zheng A, Luo L (2012) A semi-supervised fuzzy SVM clustering framework. Recent advances in computer science and information engineering, lecture notes in electrical engineering, 1:525–530. doi:10.1007/978-3-642-25781-0_78

  11. Le T, Tran D, Tran T, Nguyen K, Ma W (2013) Fuzzy entropy semi-supervised support vector data description. In: Proceedings of the international joint conference on neural networks, pp 1–5. doi:10.1109/IJCNN.2013.6707033

  12. Yan Y, Cui J, Pan Z (2013) Semi-supervised fuzzy relational classifier. Comput Intell Des ISCID. doi:10.1109/ISCID.2013.207

    Google Scholar 

  13. Benbrahim H (2011) Fuzzy Semi-supervised support vector machines. Mach Learn Data Min Pattern Recognit LNCS 6871:127–139

    Article  Google Scholar 

  14. El-Zahhar MM, El-Gayar NF (2010) A semi-supervised learning approach for soft labeled data. In: Proceedings of the 10th international conference on intelligent systems design and applications (ISDA) pp 1136–1141. doi:10.1109/ISDA.2010.5687034

  15. Jamalabadi H, Nasrollahi H, Alizadeh S, Araabi BN, Ahamadabadi MN (2016) Competitive interaction reasoning: a bio-inspired reasoning method for fuzzy rule based classification systems. Inf Sci 352–353:35–47. doi:10.1016/j.ins.2016.02.052

    Article  Google Scholar 

  16. Cordeiro FR, Santos WP, Silva-Filho AG (2016) A semi-supervised fuzzy GrowCut algorithm to segment and classify regions of interest of mammographic images. Expert Syst Appl 65:116–126

    Article  Google Scholar 

  17. Yan J, Qi W, Yue S, Zhang D, Guo D, Ma H (2016) Application of semi-supervised fuzzy kernel clustering algorithm in recognizing transformer winding’s pressed state. In: ICSPCC 2016—IEEE international conference on signal processing, communications and computing, conference proceedings, 7753697, Hong Kong, China, pp 1–6. doi:10.1109/ICSPCC.2016.7753697

  18. Tanaka D, Honda K, Ubukata S, Notsu A (2016) A semi-supervised framework for MMMs-induced fuzzy co-clustering with virtual samples. Adv Fuzzy Syst 2016:1–8. doi:10.1155/2016/5206048

    Article  MathSciNet  Google Scholar 

  19. Honda K, Ubukata S, Notsu A, Takahashi N, Ishikawa Y (2015) A semi-supervised fuzzy co-clustering framework and application to twitter data analysis. In: 4th international conference on informatics, electronics and vision, Fukuoka. pp 1–4. doi:10.1109/ICIEV.2015.7334057

  20. Jensen R, Vluymans S, Parthaláin NM, Cornelis C, Saeys Y (2015) Semi-supervised fuzzy-rough feature selection. Lecture notes in computer science including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics 9437:185–195

  21. Le T, Nguyen V, Pham T, Dinh M, Le TH (2015) Fuzzy semi-supervised large margin one-class support vector machine. Adv Intell Syst Comput 341:65–78

    Google Scholar 

  22. Diaz-Valenzuela I, Vila MA, Martin-Bautista MJ (2016) On the use of fuzzy constraints in semisupervised clustering. IEEE Trans Fuzzy Syst 24(4):992–999

    Article  Google Scholar 

  23. Bchir O, Frigui H, Ismail MMB (2013) Semi-supervised fuzzy clustering with learnable cluster dependent kernels. Int J Artif Intell Tools 22(3):1–26. doi:10.1142/S0218213013500139

    Article  Google Scholar 

  24. Sen P, Namata G, Bilgic M, Getoor L, Galligher B, Eliassi-Rad T (2008) Collective classification in network data. Adv Artif Int 29(3):93–106

    Google Scholar 

  25. Kecman V (2001) Learning and soft computing. MIR Press, Moscow. ISBN 9780262112550

    MATH  Google Scholar 

  26. Iliadis L (2007) Intelligent information systems and application in risk estimation. Stamoulis Publishing, Thessaloniki

  27. Iliadis L, Papaleonidas A (2016) Computational intelligence an intelligent agents. Tziolas publications, Thessaloniki

  28. Cox E (2005) Fuzzy modeling and genetic algorithms for data mining and exploration. Elsevier Science, USA

    MATH  Google Scholar 

  29. Anezakis VD, Dermetzis K, Iliadis L, Spartalis S (2016) Fuzzy cognitive maps for long-term prognosis of the evolution of atmospheric pollution, based on climate change scenarios: The case of Athens. Lecture notes in computer science (lecture notes in artificial intelligence and lecture notes in bioinformatics) 9875:175–186. doi:10.1007/978-3-319-45243-2_16

  30. Ghosh P, Kundu K (2013) Photo-fuzzy concepts generation technique using fuzzy graph. In: Chakraborty MK, Skowron A, Maiti M, Kar S (eds) Facets of uncertainties and applications, ICFUA. Springer, Kolkata, pp 63–72

    Google Scholar 

  31. Cordon O, Herrera F, Hoffmann F, Magdalena L (2001) Genetic fuzzy systems evolutionary tuning and learning of fuzzy knowledge bases. Advances in fuzzy systems-applications and theory, vol 19. World Scientific Publishing, Hong Kong

    MATH  Google Scholar 

  32. Pukelsheim F (1994) The three sigma rule. Am Stat 48:88–91

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Demertzis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bougoudis, I., Demertzis, K., Iliadis, L. et al. FuSSFFra, a fuzzy semi-supervised forecasting framework: the case of the air pollution in Athens. Neural Comput & Applic 29, 375–388 (2018). https://doi.org/10.1007/s00521-017-3125-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-3125-2

Keywords

Navigation