Epileptic seizure detection using hybrid machine learning methods

  • Abdulhamit Subasi
  • Jasmin Kevric
  • M. Abdullah Canbaz
Original Article

Abstract

The aim of this study is to establish a hybrid model for epileptic seizure detection with genetic algorithm (GA) and particle swarm optimization (PSO) to determine the optimum parameters of support vector machines (SVMs) for classification of EEG data. SVMs are one of the robust machine learning techniques and have been extensively used in many application areas. The kernel parameter’s setting for SVMs in training process effects the classification accuracy. We used GA- and PSO-based approach to optimize the SVM parameters. Compared to the GA algorithm, the PSO-based approach significantly improves the classification accuracy. It is shown that the proposed Hybrid SVM can reach a classification accuracy of up to 99.38% for the EEG datasets. Hence, the proposed Hybrid SVM is an efficient tool for neuroscientists to detect epileptic seizure in EEG.

Keywords

Discrete wavelet transform (DWT) Electroencephalogram (EEG) Epileptic seizure Genetic algorithm (GA) Particle swarm optimization (PSO) Support vector machines (SVMs) 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Geva AB, Kerem DH (1999) Brain state identification and forecasting of acute pathology using unsupervised fuzzy clustering of EEG temporal patterns. In: Teodorescu HN, Kandel A, Jain LC (eds) Fuzzy and neuro-fuzzy Systems in Medicine. CRC Press, Boca Raton, FLGoogle Scholar
  2. 2.
    Bylsma FW, Peyser CE, Folstein SE, Ross C, Brandt J (1994) EEG power spectra in Huntington’s disease: clinical and neuropsychological correlates. Neuropsychologia 32:137–150CrossRefGoogle Scholar
  3. 3.
    D'Alessandro M, Esteller R, Vachtsevanos G, Hinson A, Echauz J, Litt B (2003) Epileptic seizure prediction using hybrid feature selection over multiple intracranial EEG electrode contacts: a report of four patients. IEEE Trans Biomed Eng 50:603–615CrossRefGoogle Scholar
  4. 4.
    Geva AB, Kerem DH (1998) Forecasting generalized epileptic seizures from the EEG signal by wavelet analysis and dynamic unsupervised fuzzy clustering. IEEE Trans Biomed Eng 45:1205–1216CrossRefGoogle Scholar
  5. 5.
    Preda RO, Vizireanu DN (2011) Robust wavelet-based video watermarking scheme for copyright protection using the human visual system. Journal of Electronic Imaging 20(1):013022–013022CrossRefGoogle Scholar
  6. 6.
    Preda RO, Vizireanu DN (Dec. 2010) A robust digital watermarking scheme for video copyright protection in the wavelet domain. Measurement 43(10):1720–1726CrossRefGoogle Scholar
  7. 7.
    Preda RO, Vizireanu DN (2011) Quantisation-based video watermarking in the wavelet domain with spatial and temporal redundancy. Int J Electron 98(3):393–405CrossRefGoogle Scholar
  8. 8.
    Bigan C (1998) A recursive time-frequency processing method for neural networks recognition of EEG seizures. In: Ifeachor EC, Sperduti A, Starita A (eds) Neural networks and expert systems in medicine and healthcare. World Scientific, SingaporeGoogle Scholar
  9. 9.
    Bronzino JD (2000) Principles of electroencephalography, The biomedical engineering handbook, Second edn. CRC Press LLC, Boca RatonGoogle Scholar
  10. 10.
    Adeli H, Zhou Z, Dadmehr N (2003) Analysis of EEG records in an epileptic patient using wavelet transform. J Neurosci Methods 123:69–87CrossRefGoogle Scholar
  11. 11.
    Subasi A (2007) EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst Appl 32:1084–1093CrossRefGoogle Scholar
  12. 12.
    Subasi A, Gürsoy MI (2010) Comparison of PCA, ICA and LDA in EEG signal classification using DWT and SVM. Expert Syst Appl 37:8659–8666CrossRefGoogle Scholar
  13. 13.
    Harikumar, H., Narayanan, B. S (2003) Fuzzy techniques for classification of epilepsy risk level from EEG signals. Conference on Convergent Technologies for Asia-Pacific Region TENCON, p 209–213Google Scholar
  14. 14.
    Peker M, Sen B, Delen D (2016) A novel method for automated diagnosis of epilepsy using complex-valued classifiers. IEEE Journal of Biomedical and Health Informatics 20(1):108–118CrossRefGoogle Scholar
  15. 15.
    Islam MK, Rastegarnia A, Yang Z (2016) A wavelet-based artifact reduction from scalp eeg for epileptic seizure detection. IEEE Journal of Biomedical and Health Informatics 20(5):1321–1332CrossRefGoogle Scholar
  16. 16.
    Sharmila A, Geethanjali P (2016) DWT based detection of epileptic seizure from EEG signals using naive Bayes and k-NN classifiers. IEEE Access 4:7716–7727CrossRefGoogle Scholar
  17. 17.
    Wang G, Sun Z, Tao R, Li K, Bao G, Yan X (2016) Epileptic seizure detection based on partial directed coherence analysis. IEEE J Biomed Health Inform 20(3):873–879CrossRefGoogle Scholar
  18. 18.
    Hassan AR, Siuly S, Zhang Y (2016) Epileptic seizure detection in EEG signals using tunable-Q factor wavelet transform and bootstrap aggregating. Comput Methods Prog Biomed 137:247–259CrossRefGoogle Scholar
  19. 19.
    Zhang T, Chen W, Li M (2017) AR based quadratic feature extraction in the VMD domain for the automated seizure detection of EEG using random forest classifier. Biomed. Signal Process. Control 31:550–559CrossRefGoogle Scholar
  20. 20.
    Mursalin M, Zhang Y, Chen Y, Chawla NV (2017) Automated epileptic seizure detection using improved correlation-based feature selection with random forest classifier. Neurocomputing 241:204–214CrossRefGoogle Scholar
  21. 21.
    Dhiman R, Saini J (2017) Biogeography based hybrid scheme for automatic detection of epileptic seizures from EEG signatures. Appl Soft Comput 51:116–129CrossRefGoogle Scholar
  22. 22.
    Li M, Chen W, Zhang T (2017) Automatic epileptic EEG detection using DT-CWT-based non-linear features. Biomed Signal Process Control 34:114–125CrossRefGoogle Scholar
  23. 23.
    Andrzejak, R.G., Lehnertz, K., Mormann, F., Rieke, C., David, P., Elger, C.E. (2001) Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Physical Review E 64Google Scholar
  24. 24.
    Marchant BP (2003) Time–frequency analysis for biosystem engineering. Biosyst Eng 85:261–281CrossRefGoogle Scholar
  25. 25.
    Semmlow JL (2004) Biosignal and biomedical image processing: MATLAB-based applications. Marcel Dekker, Inc., New YorkCrossRefGoogle Scholar
  26. 26.
    Kandaswamy A, Kumar CS, Ramanathan RP, Jayaraman S, Malmurugan N (2004) Neural classification of lung sounds using wavelet coefficients. Comput Biol Med 34:523–537CrossRefGoogle Scholar
  27. 27.
    Vapnik VN (2000) Nature of statistical learning theory, Second edn. Springer, New YorkCrossRefMATHGoogle Scholar
  28. 28.
    Joachims, T (1998) Text categorization with support vector machines. Proceedings of European conference on machine learning (ECML). Chemintz, DE, p 137–142Google Scholar
  29. 29.
    Pontil M, Verri A (1998) Support vector machines for 3D object recognition. IEEE Trans Pattern Anal Mach Intell 20:637–646CrossRefGoogle Scholar
  30. 30.
    Yu, G. X., Ostrouchov, G., Geist, A., Samatova, N. F (2003) An SVM-based algorithm for identification of photosynthesis-specific genome features. Second IEEE computer society bioinformatics conference, CA, USA, pp. 235–243Google Scholar
  31. 31.
    Schlkopf B, Burges C, Smola A (1999) Advances in kernel methods: support vector learning. MIT Press, Cambridge, MAGoogle Scholar
  32. 32.
    Schlkopf B, Smola A (2002) Learning with kernels: support vector machines, regularization, optimization and beyond (adaptive computation and machine learning). MIT Press, Cambridge, MAGoogle Scholar
  33. 33.
    Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines: and other kernel-based learning methods. Cambridge University Press, New YorkCrossRefMATHGoogle Scholar
  34. 34.
    Davis L (ed) (1991) Handbook of genetic algotithms. Van Nostrand Reinhold, New YorkGoogle Scholar
  35. 35.
    Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, New YorkMATHGoogle Scholar
  36. 36.
    Michalewicz Z (1992) Genetic algorithms + data structures = evolution programs. Springer, Berlin Heideberg New YorkCrossRefMATHGoogle Scholar
  37. 37.
    Bandyopadhyay, S., Pal, S. K (2007) Classification and learning using genetic algorithms. SpringerGoogle Scholar
  38. 38.
    Guo XC, Yang JH, Wu CG, Wang CY, Liang YC (2008) A novel LS-SVMs hyper-parameter selection based on particle swarm optimization. Neurocomputing 71:3211–3215CrossRefGoogle Scholar
  39. 39.
    Engelbrecht, A. P. (2007) Computational Intelligence. WileyGoogle Scholar
  40. 40.
    Huang C-L, Dun J-F (2008) A distributed PSO–SVM hybrid system with feature selection and parameter optimization. Appl Soft Comput 8:1381–1391CrossRefGoogle Scholar
  41. 41.
    Ardjani, F., Sadouni, K (2010) Optimization of SVM multiclass by particle swarm (PSO-SVM). I J Modern Education and Computer Science, p 32–38Google Scholar
  42. 42.
    Hsu, C.-W., Chang, C.-C., Lin, C.-J. (2003) A practical guide to support vector classificationGoogle Scholar

Copyright information

© The Natural Computing Applications Forum 2017

Authors and Affiliations

  1. 1.College of Engineering, Computer Science DepartmentEffat UniversityJeddahSaudi Arabia
  2. 2.Faculty of Engineering and Information Technologies, Department of Electrical and Electronics EngineeringInternational Burch UniversitySarajevoBosnia and Herzegovina
  3. 3.College of Engineering, Department of Computer Science and EngineeringUniversity of Nevada, RenoRenoUSA

Personalised recommendations