Numerical study of radiative Maxwell viscoelastic magnetized flow from a stretching permeable sheet with the Cattaneo–Christov heat flux model

  • A. Shahid
  • M. M. Bhatti
  • O. Anwar Bég
  • A. Kadir
Original Article


In this article, the Cattaneo–Christov heat flux model is implemented to study non-Fourier heat and mass transfer in the magnetohydrodynamic flow of an upper-convected Maxwell fluid over a permeable stretching sheet under a transverse constant magnetic field. Thermal radiation and chemical reaction effects are also considered. The nonlinear partial differential conservation equations for mass, momentum, energy and species conservation are transformed with appropriate similarity variables into a system of coupled, highly nonlinear ordinary differential equations with appropriate boundary conditions. Numerical solutions have been presented for the influence of elasticity parameter (α), magnetic parameter (M 2), suction/injection parameter \((\lambda ),\) Prandtl number (Pr), conduction–radiation parameter (R d ), sheet stretching parameter (A), Schmidt number (Sc), chemical reaction parameter \(\left( {\gamma_{c} } \right)\), modified Deborah number with respect to relaxation time of heat flux (i.e., non-Fourier Deborah number) on velocity components, temperature and concentration profiles using the successive Taylor series linearization method (STSLM) utilizing Chebyshev interpolating polynomials and Gauss–Lobatto collocation. The effects of selected parameters on skin friction coefficient, Nusselt number and Sherwood number are also presented with the help of tables. Verification of the STSLM solutions is achieved with existing published results demonstrating close agreement. Further validation of skin friction coefficient, Nusselt number and Sherwood number values computed with STSLM is included using Mathematica software shooting quadrature.


Heat and mass transfer Magnetohydrodynamics UC Maxwell viscoelastic fluid Heat flux Radiative flux STSLM numerical solution 


Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Fourier JBJ (1822) Theorie analytique de la chaleur. English translation: The analytic theory of heat (1878). Firman Didot, ParisGoogle Scholar
  2. 2.
    Cattaneo C (1948) Sulla conduzione del calore. Atti Semin Mat Fis della Università di Modena 3:3MATHGoogle Scholar
  3. 3.
    Christov CI (2009) On frame indifferent formulation of the Maxwell–Cattaneo model of finite-speed heat conduction. Mech Res Commun 36(4):481–486MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Ostoja-Starzewski M (2009) A derivation of the Maxwell–Cattaneo equation from the free energy and dissipation potentials. Int J Eng Sci 47(7):807–810MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Tibullo V, Zampoli V (2011) A uniqueness result for the Cattaneo–Christov heat conduction model applied to incompressible fluids. Mech Res Commun 38(1):77–79CrossRefMATHGoogle Scholar
  6. 6.
    Straughan B (2010) Thermal convection with the Cattaneo–Christov model. Int J Heat Mass Transf 53(1):95–98CrossRefMATHGoogle Scholar
  7. 7.
    Haddad SAM (2014) Thermal instability in Brinkman porous media with Cattaneo–Christov heat flux. Int J Heat Mass Transf 68:659–668CrossRefGoogle Scholar
  8. 8.
    Ciarletta M, Straughan B (2010) Uniqueness and structural stability for the Cattaneo–Christov equations. Mech Res Commun 37(5):445–447CrossRefMATHGoogle Scholar
  9. 9.
    Al-Qahtani H, Yilbas BS (2010) The closed form solutions for Cattaneo and stress equations due to step input pulse heating. Phys B 405(18):3869–3874CrossRefGoogle Scholar
  10. 10.
    Papanicolaou NC, Christov CI, Jordan PM (2011) The influence of thermal relaxation on the oscillatory properties of two-gradient convection in a vertical slot. Eur J Mech B/Fluids 30(1):68–75CrossRefMATHGoogle Scholar
  11. 11.
    Han S, Zheng L, Li C, Zhang X (2014) Coupled flow and heat transfer in viscoelastic fluid with Cattaneo–Christov heat flux model. Appl Math Lett 38:87–93MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Mustafa M (2015) Cattaneo–Christov heat flux model for rotating flow and heat transfer of upper-convected Maxwell fluid. AIP Adv 5(4):047109CrossRefGoogle Scholar
  13. 13.
    Bissell JJ (2015) On oscillatory convection with the Cattaneo-Christov hyperbolic heat-flow model. Proc R Soc A 471:20140845MathSciNetCrossRefGoogle Scholar
  14. 14.
    Nadeem S, Haq RU, Akbar NS, Lee C, Khan ZH (2013) Numerical study of boundary layer flow and heat transfer of Oldroyd-B nanofluid towards a stretching sheet. PLoS ONE 8(8):e69811CrossRefGoogle Scholar
  15. 15.
    Kumaran V, Ramanaiah G (1996) A note on the flow over a stretching sheet. Acta Mech 116:229–233CrossRefMATHGoogle Scholar
  16. 16.
    Rosali H, Ishak A, Pop I (2011) Stagnation point flow and heat transfer over a stretching/shrinking sheet in a porous medium. Int Commun Heat Mass Transf 38:1029–1032CrossRefGoogle Scholar
  17. 17.
    Qasim M (2013) Heat and mass transfer in a Jeffrey fluid over a stretching sheet with heat source/sink. Alex Eng J 52:571–575CrossRefGoogle Scholar
  18. 18.
    Mukhopadhyay S (2013) MHD boundary layer flow and heat transfer over an exponentially stretching sheet embedded in a thermally stratified medium. Alex Eng J 52:259–265CrossRefGoogle Scholar
  19. 19.
    Khalili S, Dinarvand S, Hosseini R, Tamim H, Pop I (2014) Unsteady MHD flow and heat transfer near stagnation point over a stretching/shrinking sheet in porous medium filled with a nanofluid. Chin Phys B 23:048203CrossRefGoogle Scholar
  20. 20.
    Khalili S, Dinarvand S, Hosseini R, Saber M, Pop I (2014) Magnetohydrodynamic stagnation point flow toward stretching/shrinking permeable plate in porous medium filled with a nanofluid. Proc Inst Mech Eng E J Process Mech Eng 228:309–319CrossRefGoogle Scholar
  21. 21.
    Bhatti MM, Shahid A, Rashidi MM (2016) Numerical simulation of fluid flow over a shrinking porous sheet by successive linearization method. Alex Eng J 55(1):51–56CrossRefGoogle Scholar
  22. 22.
    Seddeek MA, Abdelmeguid MS (2006) Effects of radiation and thermal diffusivity on heat transfer over a stretching surface with variable heat flux. Phys Lett A 348(3):172–179CrossRefGoogle Scholar
  23. 23.
    Mukhopadhyay S, Layek GC (2008) Effects of thermal radiation and variable fluid viscosity on free convective flow and heat transfer past a porous stretching surface. Int J Heat Mass Transf 51(9):2167–2178CrossRefMATHGoogle Scholar
  24. 24.
    Pal D (2009) Heat and mass transfer in stagnation-point flow towards a stretching surface in the presence of buoyancy force and thermal radiation. Meccanica 44(2):145–158CrossRefMATHGoogle Scholar
  25. 25.
    Mukhopadhyay S (2009) Effect of thermal radiation on unsteady mixed convection flow and heat transfer over a porous stretching surface in porous medium. Int J Heat Mass Transf 52(13):3261–3265CrossRefMATHGoogle Scholar
  26. 26.
    Uddin MJ, Bég OA, Uddin MN (2016) Energy conversion, conjugate conduction, magneto-convection, diffusion and nonlinear radiation over a moving non-linearly extruding permeable stretching sheet with slip, thermal and mass convective boundary conditions. Energy 115:1119–1129CrossRefGoogle Scholar
  27. 27.
    Mabood F, Khan WA, Ismail AM (2015) MHD boundary layer flow and heat transfer of nanofluids over a nonlinear stretching sheet: a numerical study. J Magn Magn Mater 374:569–576CrossRefGoogle Scholar
  28. 28.
    Daniel YS, Daniel SK (2015) Effects of buoyancy and thermal radiation on MHD flow over a stretching porous sheet using homotopy analysis method. Alex Eng J 54(3):705–712CrossRefGoogle Scholar
  29. 29.
    Bhatti MM, Rashidi MM (2016) Effects of thermo-diffusion and thermal radiation on Williamson nanofluid over a porous shrinking/stretching sheet. J Mol Liq 221(2016):567–573CrossRefGoogle Scholar
  30. 30.
    Akbar NS, Khan ZH (2016) Effect of variable thermal conductivity and thermal radiation with CNTS suspended nanofluid over a stretching sheet with convective slip boundary conditions: Numerical study. J Mol Liq 222:279–286CrossRefGoogle Scholar
  31. 31.
    Makinde OD (2010) MHD mixed-convection interaction with thermal radiation and nth order chemical reaction past a vertical porous plate embedded in a porous medium. Chem Eng Commun 198(4):590–608CrossRefGoogle Scholar
  32. 32.
    Makinde OD (2010) On MHD heat and mass transfer over a moving vertical plate with a convective surface boundary condition. Can J Chem Eng 88(6):983–990CrossRefGoogle Scholar
  33. 33.
    Ellahi R, Hameed M (2012) Numerical analysis of steady non-Newtonian flows with heat transfer analysis, MHD and nonlinear slip effects. Int J Numer Methods Heat Fluid Flow 22(1):24–38CrossRefGoogle Scholar
  34. 34.
    Akbar NS, Nadeem S, Haq RU, Khan ZH (2013) Radiation effects on MHD stagnation point flow of nanofluid towards a stretching surface with convective boundary condition. Chin J Aeronaut 26(6):1389–1397CrossRefGoogle Scholar
  35. 35.
    Bég OA, Zueco J, Bég TA, Kadir A, Khan UF (2016) Network electro-thermal simulation of non-isothermal magnetohydrodynamic heat transfer from a transpiring cone with pressure work effects. Int J Appl Comput Math USA. doi: 10.1007/s40819-016-0192-5 Google Scholar
  36. 36.
    Gaffar SA, Ramachandra Prasad V, Keshava Reddy S, Bég OA (2016) Magnetohydrodynamic free convection boundary layer flow of non-Newtonian tangent hyperbolic fluid from a vertical permeable cone with variable surface temperature. J Braz Soc Mech Sci Eng. doi: 10.1007/s40430-016-0611-x Google Scholar
  37. 37.
    Noor NFM, Ul Haq R, Abbasbandy S, Hashim I (2016) Heat flux performance in a porous medium embedded Maxwell fluid flow over a vertically stretched plate due to heat absorption. J Nonlinear Sci Appl 9(5):2986–3001MathSciNetMATHGoogle Scholar
  38. 38.
    Halim NA, Haq RU, Noor NFM (2016) Active and passive controls of nanoparticles in Maxwell stagnation point flow over a slipped stretched surface. Meccanica 1–13. doi: 10.1007/s11012-016-0517-9
  39. 39.
    Sheikholeslami M, Bhatti MM (2017) Active method for nanofluid heat transfer enhancement by means of EHD. Int J Heat Mass Transf 109:115–122CrossRefGoogle Scholar
  40. 40.
    Ocone R, Astarita G (1987) Continuous and discontinuous models for transport phenomena in polymers. AIChemE J 33:423–435CrossRefGoogle Scholar
  41. 41.
    Zhe Z, Dengying L (2000) The research progress of the non-Fourier heat conduction. Adv Mech 30:123–141Google Scholar
  42. 42.
    Huilgol RR (1992) A theoretical and numerical study of non-Fourier effects in viscometric and extensional flow of an incompressible simple fluid. J Non-Newtonian Fluid Mech 43:83–102CrossRefMATHGoogle Scholar
  43. 43.
    Motsa SS, Hayat T, Aldossary OM (2012) MHD flow of upper-convected Maxwell fluid over porous stretching sheet using successive Taylor series linearization method. Appl Math Mech 33(8):975–990MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Bhatti MM, Rashidi MM, Pop I (2017) Entropy generation with nonlinear heat and mass transfer on MHD boundary layer over a moving surface using SLM. Nonlinear Eng. doi: 10.1515/nleng-2016-0021 Google Scholar
  45. 45.
    Bhatti MM, Abbas T, Rashidi MM (2017) Entropy generation as a practical tool of optimisation for non-Newtonian nanofluid flow through a permeable stretching surface using SLM. J Comput Des Eng 4(1):21–28Google Scholar
  46. 46.
    Abel MS, Tawade JV, Nandeppanavar MM (2012) MHD flow and heat transfer for the upper-convected Maxwell fluid over a stretching sheet. Meccanica 47(2):385–393MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Megahed AM (2013) Variable fluid properties and variable heat flux effects on the flow and heat transfer in a non-Newtonian Maxwell fluid over an unsteady stretching sheet with slip velocity. Chin Phys B 22(9):094701CrossRefGoogle Scholar
  48. 48.
    Sadeghy K, Hajibeygi H, Taghavi SM (2006) Stagnation-point flow of upper-convected Maxwell fluids. Int J Non-Linear Mech 41(10):1242–1247CrossRefGoogle Scholar
  49. 49.
    Mukhopadhyay S (2012) Heat transfer analysis of the unsteady flow of a Maxwell fluid over a stretching surface in the presence of a heat source/sink. Chin Phys Lett 29(5):054703CrossRefGoogle Scholar
  50. 50.
    Alizadeh-Pahlavan A, Aliakbar V, Vakili-Farahani F, Sadeghy K (2009) MHD flows of UCM fluids above porous stretching sheets using two-auxiliary-parameter homotopy analysis method. Commun Nonlinear Sci Numer Simul 14:473–488CrossRefGoogle Scholar

Copyright information

© The Natural Computing Applications Forum 2017

Authors and Affiliations

  • A. Shahid
    • 1
  • M. M. Bhatti
    • 2
  • O. Anwar Bég
    • 3
  • A. Kadir
    • 4
  1. 1.School of Mathematics and Information SciencesGuangzhou UniversityGuangzhouChina
  2. 2.Shanghai Institute of Applied Mathematics and MechanicsShanghai UniversityShanghaiChina
  3. 3.Aeronautical & Mechanical Engineering Department, SCSEUniversity of SalfordManchesterUK
  4. 4.Petroleum and Gas Engineering Division, SCSEUniversity of SalfordManchesterUK

Personalised recommendations