Neural Computing and Applications

, Volume 29, Issue 9, pp 663–672 | Cite as

Bioinspired point cloud representation: 3D object tracking

  • Sergio Orts-Escolano
  • Jose Garcia-Rodriguez
  • Miguel Cazorla
  • Vicente Morell
  • Jorge Azorin
  • Marcelo Saval
  • Alberto Garcia-Garcia
  • Victor Villena
Original Article
  • 229 Downloads

Abstract

The problem of processing point cloud sequences is considered in this work. In particular, a system that represents and tracks objects in dynamic scenes acquired using low-cost sensors such as the Kinect is presented. An efficient neural network-based approach is proposed to represent and estimate the motion of 3D objects. This system addresses multiple computer vision tasks such as object segmentation, representation, motion analysis and tracking. The use of a neural network allows the unsupervised estimation of motion and the representation of objects in the scene. This proposal avoids the problem of finding corresponding features while tracking moving objects. A set of experiments are presented that demonstrate the validity of our method to track 3D objects. Moreover, an optimization strategy is applied to achieve real-time processing rates. Favorable results are presented demonstrating the capabilities of the GNG-based algorithm for this task. Some videos of the proposed system are available on the project website (http://www.dtic.ua.es/~sorts/3d_object_tracking/).

Keywords

Point cloud 3D Object representation Object tracking Bioinspired representation 

Notes

Acknowledgments

This work was partially funded by the Spanish Government DPI2013-40534-R Grant.

References

  1. 1.
    Yang H, Shao L, Zheng F, Wang L, Song Z (2011) Recent advances and trends in visual tracking: a review. Neurocomputing 74(18):3823–3831. doi: 10.1016/j.neucom.2011.07.024 CrossRefGoogle Scholar
  2. 2.
    Han J, Shao L, Xu D, Shotton J (2013) Enhanced computer vision with microsoft kinect sensor: a review. IEEE Trans Cybern 43(5):1318–1334. doi: 10.1109/tcyb.2013.2265378 CrossRefGoogle Scholar
  3. 3.
    Zhang Z, Liu W, Metsis V, Athitsos V (2012) A viewpoint-independent statistical method for fall detection. In: 2012 21st International conference on Pattern recognition (ICPR), pp 3626–3630, ISSN 1051-4651Google Scholar
  4. 4.
    Wang P, Ma S, Shen Y (2014) Performance study of feature descriptors for human detection on depth map. Int J Model Simul Sci Comput 05(03):1450003CrossRefGoogle Scholar
  5. 5.
    Spinello L, Arras KO (2011) People detection in RGB-D data. In: International Conference on IEEE/RSJGoogle Scholar
  6. 6.
    Spinello L, Stachniss C, Burgard W (2012) Scene in the loop: toward adaptation-by-tracking in RGB-D data. In: Proceedings of the workshop on RGB-D: advanced reasoning with depth cameras (RSS)Google Scholar
  7. 7.
    Song S, Xiao J (2013) Tracking revisited using RGBD camera: unified benchmark and baselines. In: Proceedings of the 2013 IEEE international conference on computer vision, ICCV ’13. IEEE Computer Society, Washington, pp 233–240Google Scholar
  8. 8.
    Teichman A, Lussier J, Thrun S (2013) Learning to segment and track in RGBD. IEEE Trans Autom Sci Eng 10(4):841–852. doi: 10.1109/TASE.2013.2264286 CrossRefGoogle Scholar
  9. 9.
    Liu Y, Li H, Chen YQ (2012) Automatic tracking of a large number of moving targets in 3D. In: Proceedings of the 12th European conference on computer vision—volume part IV, ECCV’12. Springer-Verlag, Berlin, pp 730–742, ISBN 978-3-642-33764-2Google Scholar
  10. 10.
    Gupta A, Shafaei A, Little J, Woodham R (2014) Unlabelled 3D motion examples improve cross-view action recognition. In: Proceedings of the British machine vision conference. BMVA PressGoogle Scholar
  11. 11.
    Crivellaro A, Lepetit V (2014) Robust 3D tracking with descriptor fields. In: Proceedings of 2014 IEEE conference on computer vision and pattern recognition (CVPR), pp 3414–3421. doi: 10.1109/CVPR.2014.436
  12. 12.
    Quiroga J, Brox T, Devernay F, Crowley J (2014) Dense semi-rigid scene flow estimation from RGBD images. In: Fleet D, Pajdla T, Schiele B, Tuytelaars T (eds) Computer vision ECCV 2014, vol 8695., Lecture notes in computer scienceSpringer International Publishing, New York, pp 567–582Google Scholar
  13. 13.
    Herbst E, Ren X, Fox D (2013) RGB-D flow: dense 3-D motion estimation using color and depth. In: 2013 IEEE international conference on robotics and automation, Karlsruhe, 6–10 May 2013, pp 2276–2282Google Scholar
  14. 14.
    Faion F, Baum M, Hanebeck U (2012) Tracking 3D shapes in noisy point clouds with random hypersurface models. In: 2012 15th international conference on information fusion (FUSION), pp 2230–2235Google Scholar
  15. 15.
    Yuheng Ren C, Prisacariu V, Murray D, Reid I (2013) STAR3D: simultaneous tracking and reconstruction of 3D objects using RGB-D data. In: The IEEE international conference on computer vision (ICCV)Google Scholar
  16. 16.
    Park Y, Lepetit V, Woo W (2011) Texture-less object tracking with online training using an RGB-D camera. In: 2011 10th IEEE international symposium on mixed and augmented reality (ISMAR), pp 121–126. doi: 10.1109/ISMAR.2011.6092377
  17. 17.
    Kyriazis N, Argyros A (2014) Scalable 3D tracking of multiple interacting objects. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 3430–3437Google Scholar
  18. 18.
    Fritzke B (1997) A self-organizing network that can follow non-stationary distributions. In: Artificial neural networks ICANN’97, vol. 1327 of Lecture notes in computer science. Springer, Berlin, pp 613–618Google Scholar
  19. 19.
    Fritzke B (1995) A growing neural gas network learns topologies. Adv Neural Inf Process Syst 7:625–632Google Scholar
  20. 20.
    Frezza-Buet H (2008) Following non-stationary distributions by controlling the vector quantization accuracy of a growing neural gas network. Neurocomputing 71:1191–1202CrossRefGoogle Scholar
  21. 21.
    Cao X, Suganthan PN (2002) Hierarchical overlapped growing neural gas networks with applications to video shot detection and motion characterization. In: Proceedings of international joint conference neural networks IJCNN ’02, vol. 2, pp 1069–1074Google Scholar
  22. 22.
    Frezza-Buet H (2014) Online computing of non-stationary distributions velocity fields by an accuracy controlled growing neural gas. Neural Netw 60:203–221CrossRefGoogle Scholar
  23. 23.
    Coleca F, State A, Klement S, Barth E, Martinetz T (2015) Self-organizing maps for hand and full body tracking. Neurocomputing 147(0):174 -184, advances in self-organizing maps subtitle of the special issue: selected papers from the workshop on self-organizing maps 2012 (WSOM 2012)Google Scholar
  24. 24.
    Garcia-Rodriguez J, Garcia-Chamizo JM (2011) Surveillance and human-computer interaction applications of self-growing models. Appl Soft Comput 11(7):4413–4431CrossRefGoogle Scholar
  25. 25.
    Garcia-Rodriguez J, Orts-Escolano S, Angelopoulou A, Psarrou A, Azorin-Lopez J, Garcia-Chamizo J (2014) Real time motion estimation using a neural architecture implemented on GPUs. J Real Time Image Process 1–19Google Scholar
  26. 26.
    Fišer D, Faigl J, Kulich M (2013) Growing neural gas efficiently. Neurocomputing 104:72–82. doi: 10.1016/j.neucom.2012.10.004 CrossRefGoogle Scholar
  27. 27.
    Orts S, Garcia-Rodriguez J, Viejo D, Cazorla M, Morell V (2012) GPGPU implementation of growing neural gas: application to 3D scene reconstruction. J Parallel Distrib Comput 72(10):1361–1372CrossRefGoogle Scholar
  28. 28.
    Martinetz TM, Berkovich SG, Schulten KJ (1993) ‘Neural-gas’ network for vector quantization and its application to time-series prediction. IEEE Trans Neural Netw 4(4):558–569CrossRefGoogle Scholar
  29. 29.
    Orts-Escolano S, Morell V, Garcia-Rodriguez J, Cazorla M (2013) Point cloud data filtering and downsampling using growing neural gas. In: The 2013 international joint conference on neural networks, IJCNN 2013, Dallas, 4–9 Aug 2013, pp 1–8Google Scholar
  30. 30.
    Garcia-Rodriguez J, Cazorla M, Orts-Escolano S, Morell V (2013) Improving 3D keypoint detection from noisy data using growing neural gas. In: Proceedings of advances in computational intelligence— 12th international work-conference on artificial neural networks, IWANN 2013, Puerto de la Cruz, 12–14 June 2013, Part II, pp 480–487Google Scholar
  31. 31.
    Do Rego RLME, Araujo AFR, De Lima Neto FB (2010) Growing self-reconstruction maps. Trans Neural Netw 21(2):211–223CrossRefGoogle Scholar
  32. 32.
    Orts-Escolano S, Garcia-Rodriguez J, Moreli V, Cazorla M, Garcia-Chamizo J (2014) 3D colour object reconstruction based on Growing Neural Gas. In: 2014 International joint conference on neural networks (IJCNN), pp 1474–1481. doi: 10.1109/IJCNN.2014.6889546
  33. 33.
    Gschwandtner M, Kwitt R, Uhl A, Pree W (2011) BlenSor: blender sensor simulation toolbox advances in visual computing. vol. 6939 of Lecture notes in computer science, chap. 20. Springer, Berlin, pp 199–208Google Scholar

Copyright information

© The Natural Computing Applications Forum 2016

Authors and Affiliations

  1. 1.Computer Technology DepartmentUniversity of AlicanteAlicanteSpain
  2. 2.Computer Science and Artificial Intelligence DepartmentUniversity of AlicanteAlicanteSpain

Personalised recommendations