Neural Computing and Applications

, Volume 29, Issue 7, pp 627–637 | Cite as

Artificial neural networks based dynamic priority arbitration for asynchronous flow control

  • Syed Rameez Naqvi
  • Tallha Akram
  • Sajjad Ali Haider
  • Muhammad Kamran
Original Article


Accesses to physical links in Networks-on-Chip need to be appropriately arbitrated to avoid collisions. In the case of asynchronous routers, this arbitration between various clients, carrying messages with different service levels, is managed by dedicated circuits called arbiters. The latter are accustomed to allocate the shared resource to each client in a round-robin fashion; however, they may be tuned to favor certain messages more frequently by means of various digital design techniques. In this work, we make use of artificial neural networks to propose a mechanism to dynamically compute priority for each message by defining a few constraints. Based on these constraints, we first build a mathematical model for the objective function, and propose two algorithms for vector selection and resource allocation to train the artificial neural networks. We carry out a detailed comparison between seven different learning algorithms, and observe their effectiveness in terms of prediction efficiency for the application of dynamic priority arbitration. The decision is based on input parameters: available tokens, service levels, and an active request from each client. The performance of the learning algorithms has been analyzed in terms of mean squared error, true acceptance rate, number of epochs and execution time, so as to ensure mutual exclusion.


Asynchronous Networks-on-Chip Resource sharing Dynamic priority arbitration Artificial neural networks Vector selection Hidden layers 


  1. 1.
    Chapiro DM (1984) Globally-asynchronous locally-synchronous systems. Ph.D. thesis, Stanford UniversityGoogle Scholar
  2. 2.
    Agarwal A, Iskander C, Shankar R (2009) Survey of NoC architectures and contributions. Eng Comput Archit 3(1)Google Scholar
  3. 3.
    Beigne E, Clermidy F, Vivet P, Clouard A, Renaudin M (2005) Proceedings of 11th IEEE symposium on asynchronous circuits and systems (ASYNC 2005), pp 54–63. doi: 10.1109/ASYNC.2005.10
  4. 4.
    Beigne E, Vivet P (2006) Proceedings of the 12th IEEE international symposium on asynchronous circuits and systems. IEEE Computer Society, Washington, DC, USA, 2006. ASYNC ’06, p 172. doi: 10.1109/ASYNC.2006.16
  5. 5.
    Dally W, Towles B (2001) Design automation conference, 2001. Proceedings (2001), pp 684–689. doi: 10.1109/DAC.2001.156225
  6. 6.
    Naqvi S, Najvirt R, Steininger A (2013) 2013 IEEE 16th International Symposium on design and diagnostics of electronic circuits systems (DDECS), pp 153–158. doi: 10.1109/DDECS.2013.6549808
  7. 7.
    Najvirt R, Naqvi S, Steininger A (2013) 2013 IEEE 19th international symposium on asynchronous circuits and systems (ASYNC), pp 115–123. doi: 10.1109/ASYNC.2013.25
  8. 8.
    Bjerregaard T (2005) Sparso, in design, automation and test in Europe, 2005. Proceedings, vol 2, pp 1226–1231.doi: 10.1109/DATE.2005.36
  9. 9.
    Rostislav DR, Vishnyakov V, Friedman E, Ginosar R (2005) Proceedings of the 11th IEEE international symposium on asynchronous circuits and systems. IEEE Computer Society, Washington, DC, USA, 2005. ASYNC ’05, pp 44–53. doi: 10.1109/ASYNC.2005.11
  10. 10.
    Dobkin RR, Ginosar R, Kolodny A (2009) QNoC asynchronous router. Integr VLSI J 42(2):103. doi: 10.1016/j.vlsi.2008.03.001
  11. 11.
    Dobkin R, Ginosar R, Cidon I (2007) First international symposium on Networks-on-Chip, 2007. NOCS 2007, p 218. doi: 10.1109/NOCS.2007.36
  12. 12.
    Feliciian F, Furber S (2004) IEEE international SOC conference, 2004 Proceedings, pp 274–277. doi: 10.1109/SOCC.2004.1362432
  13. 13.
    Naqvi SR (2012) ICCGI 2012Google Scholar
  14. 14.
    Sparso J, Furber S (2010) Principles of asynchronous circuit design: a systems perspective, 1st edn. Springer, BerlinGoogle Scholar
  15. 15.
    Ogras UY, Marculescu R (2013) Modeling, analysis and optimization of network-on-chip communication architectures. Springer, BerlinCrossRefGoogle Scholar
  16. 16.
    Naqvi SR, Steininger A (2014) Proceedings of the conference on design, automation & test in Europe. European Design and Automation Association, 3001 Leuven, Belgium, Belgium, 2014, DATE ’14, pp 295:1–295:6.
  17. 17.
    Kinniment DJ (2007) Synchronization and arbitration in digital systems. Wiley, New YorkCrossRefGoogle Scholar
  18. 18.
    Dally W, Towles B (2003) Principles and practices of interconnection networks. Morgan Kaufmann Publishers Inc., San FranciscoGoogle Scholar
  19. 19.
    Duato J, Yalamanchili S, Lionel N (2002) Interconnection networks: an engineering approach. Morgan Kaufmann Publishers Inc., San FranciscoGoogle Scholar
  20. 20.
    Bjerregaard T, Sparso J (2005) Proceedings of 11th IEEE international symposium on asynchronous circuits and systems, 2005. ASYNC 2005, pp 34 – 43. doi: 10.1109/ASYNC.2005.7
  21. 21.
    Felicijan T, Bainbridge J, Furber S (2003) Proceedings of the 15th international conference on microelectronics, 2003. ICM 2003, pp 123–126. doi: 10.1109/ICM.2003.1287737
  22. 22.
    Dimitrakopoulos G, Chrysos N, Galanopoulos K (2008) IEEE international conference on computer design, ICCD 2008, pp 664–670. doi: 10.1109/ICCD.2008.4751932
  23. 23.
    Foo S, Saratchandran P, Sundararajan N (1993) Proceedings of 1993 international joint conference on neural networks, 1993. IJCNN ’93-Nagoya, vol 3, pp 3058–3061. doi: 10.1109/IJCNN.1993.714365
  24. 24.
    Onuki J, Maenosono T, Shibata M, Iijima N, Mitsui H, Yoshida Y, Sone M (1993) Proceedings of 1993 international joint conference on neural networks, 1993. IJCNN ’93-Nagoya, vol 2, pp 1913–1916. doi: 10.1109/IJCNN.1993.717029
  25. 25.
    Speckmann H, Thole P, Rosenstiel W (1993) Proceedings of 1993 international joint conference on neural networks, 1993. IJCNN ’93-Nagoya, vol 2, pp 1951–1954. doi: 10.1109/IJCNN.1993.717038
  26. 26.
    Muller DE, Bartky WS (1959) Proceedings of international symposium on theory of switching, part 1. Harvard University Press, MassachusettszbMATHGoogle Scholar
  27. 27.
    Yakovlev A, Petrov A, Lavagno L (1994) Very large scale integration (VLSI) systems. IEEE Trans 2(3):372. doi: 10.1109/92.311648 Google Scholar
  28. 28.
    Ghiribaldi A, Bertozzi D, Nowick SM (2013) Design automation test in europe conference exhibition (DATE), pp 332–337. doi: 10.7873/DATE.2013.079
  29. 29.
    G. Miorandi, D. Bertozzi, S. Nowick (2015) 2015 21st IEEE international symposium on asynchronous circuits and systems (ASYNC), pp 108–115. doi: 10.1109/ASYNC.2015.24
  30. 30.
    Lent B (1982) A variable priority arbiter for resource allocation in asynchronous multiprocessor systems. Microprocess Microprogr 9(5):299. doi: 10.1016/0165-6074(82)90010-2
  31. 31.
    Hasasneh N, Bell I, Jesshope C (2007) Architectural premises for pervasive computing (ARCS 06). J Syst Arch 53(56):253. doi: 10.1016/j.sysarc.2006.10.004
  32. 32.
    Chouvardas VG, Antoniades I, Hatalis M, Bleris GL (2008) Resource arbitration using neural networks. Scholar
  33. 33.
    Meireles M, Almeida P, Simoes M (2003) A comprehensive review for industrial applications of artificial neural networks. Ind Electron IEEE Trans 50(3):585. doi: 10.1109/TIE.2003.812470
  34. 34.
    Azar AT (2013) Fast neural network learning algorithms for medical applications. Neural Comput Appl 23(3–4):1019CrossRefGoogle Scholar
  35. 35.
    Guojin C, Miaofen Z, Honghao Y, Yan L (2007) IEEE international conference on signal processing and communications, ICSPC 2007, pp 1207–1210. doi: 10.1109/ICSPC.2007.4728542
  36. 36.
    Güçlü U, van Gerven MAJ (2015) Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream. J Neurosci 35(27):10005. doi: 10.1523/jneurosci.5023-14.2015
  37. 37.
    Bielecki A (2003) Mathematical model of architecture and learning processes of neural networks. TASK quarterly : scientific bulletin of academic computer centre in Gdansk 7(1):93Google Scholar
  38. 38.
    Nouir Z, Sayrac B, Fourestié B, Tabbara W, Brouaye F (2007) 13th European wireless conference, Paris, FranceGoogle Scholar
  39. 39.
    Reed R (1993) Pruning algorithms-a survey. Trans Neural Netw 4(5):740. doi: 10.1109/72.248452
  40. 40.
    Marquardt DW (1963) An alogorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11(2):431CrossRefzbMATHGoogle Scholar
  41. 41.
    Beale E (1972) A derivation of conjugate gradients. Numerical methods for nonlinear optimization, pp 39–43Google Scholar
  42. 42.
    Gill PE, Murray W, Wright MH (1981) Practical Optimization. Academic PressGoogle Scholar
  43. 43.
    Hestenes MR (2012) Conjugate direction methods in optimization, vol 12. Springer, BerlinzbMATHGoogle Scholar
  44. 44.
    Johansson EM, Dowla FU, Goodman DM (1991) Backpropagation learning for multilayer feed-forward neural networks using the conjugate gradient method. Int J Neural Syst 2(04):291CrossRefGoogle Scholar
  45. 45.
    Battiti R, Masulli F (1990) International neural network conference. Springer, BerlinGoogle Scholar
  46. 46.
    Battiti R (1992) First- and second-order methods for learning: between steepest descent and newton's method. Neural Comput 4(2):141. doi: 10.1162/neco.1992.4.2.141
  47. 47.
    Beale MH, Hagan MT, Demuth HB (2010) Neural network toolbox. Users Guide, MathWorksGoogle Scholar
  48. 48.
    Kamran M, Haider SA, Akram T, Naqvi SR, He SK (2016) Prediction of IV curves for a superconductingthin film using artificial neural networks. Superlattices and Microstruct 95:88–94CrossRefGoogle Scholar

Copyright information

© The Natural Computing Applications Forum 2016

Authors and Affiliations

  • Syed Rameez Naqvi
    • 1
  • Tallha Akram
    • 1
  • Sajjad Ali Haider
    • 1
  • Muhammad Kamran
    • 1
  1. 1.Department of Electrical EngineeringCOMSATS Institute of Information Technology (CIIT)Wah CantonmentPakistan

Personalised recommendations