Skip to main content
Log in

How can maturity-onset diabetes of the young be identified among more common diabetes subtypes?

  • review article
  • Published:
Wiener klinische Wochenschrift Aims and scope Submit manuscript

Summary

Maturity onset diabetes of the young (MODY) represents a diabetes type which has an enormous clinical impact. It significantly alters treatment, refines a patient’s prognosis and enables early detection of diabetes in relatives. Nevertheless, when diabetes is manifested the vast majority of MODY patients are not correctly diagnosed, but mostly falsely included among patients with type 1 or type 2 diabetes, in many cases permanently. The aim of this article is to offer a simple and comprehensible guide for recognizing individuals with MODY hidden among adult patients with another type of long-term diabetes and in women with gestational diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fajans SS, Bell GI. MODY: history, genetics, pathophysiology, and clinical decision making. Diabetes Care. 2011;34:1878–84.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Online Mendelian Inheritance in Man, OMIM. Maturity-onset diabetes of the young; MODY. 2016. http://mirror.omim.org/entry/606391. Accessed 15.2019.

    Google Scholar 

  3. Thanabalasingham G, Pal A, Selwood MP, Dudley C, Fisher K, Bingley PJ, et al. Systematic assessment of etiology in adults with a clinical diagnosis of young onset type 2 diabetes is a successful strategy for identifying maturity-onset diabetes of the young. Diabetes Care. 2012;35(6):1206–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brunerova L, Rahelic D, Ceriello A, Broz J. Use of oral antidiabetic drugs in the treatment of maturity-onset diabetes of the young (MODY): a minireview. Diabetes Metab Res Rev. 2018;34(1):e2940.

    Article  Google Scholar 

  5. Shepherd MH, Shields BM, Hudson M, Pearson ER, Hyde C, Ellard S, et al. A UK nationwide prospective study of treatment change in MODY: genetic subtype and clinical characteristics predict optimal glycaemic control after discontinuing insulin and metformin. Diabetologia. 2018;61(12):2520–7. https://doi.org/10.1007/s00125-018-4728-6.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gardner DS, Tai ES. Clinical features and treatment of maturity onset diabetes of the young (MODY). Diab Meta Syndr Obes Targets Ther. 2012;5:101–8. https://doi.org/10.2147/DMSO.S23353.

    Article  Google Scholar 

  7. Tsai EB, Sherry NA, Palmer JP. Herold KC The rise and fall of insulin secretion in type 1 diabetes mellitus. Diabetologia. 2006;49(2):261–70.

    Article  CAS  PubMed  Google Scholar 

  8. Slingerland A. Monogenic diabetes in children and young adults: challenges for researcher, clinician and patient. Rev Endocr Metab Disord. 2006;7:171–85.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Průhová Š, Dušátková P, Neumann D, Hollay E, Cinek O, Lebl J, et al. Two cases of diabetic ketoacidosis in HNF1A-MODY linked to severe dehydration: is it time to change the diagnostic criteria for MODY? Diabetes Care. 2013;36(9):2573–4.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Horikawa Y, Enya M, Mabe H, Fukushima K, Takubo N, Ohashi M, et al. NEUROD1-deficient diabetes (MODY6): Identification of the first cases in Japanese and the clinical features. Pediatr Diabetes. 2018;19(2):236–42. https://doi.org/10.1111/pedi.12553.

    Article  CAS  PubMed  Google Scholar 

  11. Grzanka M, Matejko B, Szopa M, Kiec-Wilk B, Malecki MT, Klupa T. Assessment of newly proposed clinical criteria to identify HNF1A MODY in patients with an initial diagnosis of type 1 or type 2 diabetes mellitus. Adv Med. 2016; https://doi.org/10.1155/2016/4243784.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ellard S, Bellanné-Chantelot C, Hattersley AT. European Molecular Genetics Quality Network (EMQN) MODY group. Best practice guidelines for the molecular genetic diagnosis of maturity-onset diabetes of the young. Diabetologia. 2008;51(4):546–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shields BM, Shepherd M, Hudson M, McDonald TJ, Colclough K, Peters J, et al. Population-based assessment of a biomarker-based screening pathway to aid diagnosis of Monogenic diabetes in young-onset patients. Diabetes Care. 2017;40(8):1017–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Steele AM, Wensley KJ, Ellard S, Murphy R, Shepherd M, Colclough K, et al. Use of HbA1c in the identification of patients with hyperglycaemia caused by a glucokinase mutation: observational case control studies. PLoS ONE. 2013;8:e65326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stride A, Shields B, Gill-Carey O, Chakera AJ, Colclough K, Ellard S, et al. Cross sectional and longitudinal studies suggest pharmacological treatment used in patients with glucokinase mutations does not alter glycaemia. Diabetologia. 2014;57(1):54–6.

    Article  CAS  PubMed  Google Scholar 

  16. Pruhova S, Dusatkova P, Kraml PJ, Kulich M, Prochazkova Z, Broz J, et al. Chronic mild hyperglycemia in GCK-MODY patients does not increase carotid intima-media thickness. Int J Endocrinol. 2013; https://doi.org/10.1155/2013/718254.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chakera AJ, Steele AM, Gloyn AL, Shepherd MH, Shields B, Ellard S, et al. Recognition and management of individuals with hyperglycaemia because of a heterozygous glucokinase mutation. Diabetes Care. 2015;38(7):1383–92.

    Article  CAS  PubMed  Google Scholar 

  18. Stanik J, Dusatkova P, Cinek O, Valentinova L, Huckova M, Skopkova M, et al. De novo mutations of GCK, HNF1A and HNF4A may be more frequent in MODY than previously assumed. Diabetologia. 2014;57(3):480–4.

    Article  CAS  PubMed  Google Scholar 

  19. Steele AM, Shields BM, Shepherd M, Ellard S, Hattersley AT, Pearson ER. Increased all-cause and cardiovascular mortality in monogenic diabetes as a result of mutations in the HNF1A gene. Diabet Med. 2010;27(2):157–61.

    Article  CAS  PubMed  Google Scholar 

  20. Bowman P, Flanagan SE, Edghill EL, Damhuis A, Shepherd MH, Paisey R, et al. Heterozygous ABCC8 mutations are a cause of MODY. Diabetologia. 2012;55:123–7.

    Article  CAS  PubMed  Google Scholar 

  21. Naylor R, Knight Johnson A, del Gaudio D. Maturity-onset diabetes of the young overview. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews®. Seattle: University of Washington; 2018. pp. 1993–2018. Available from: https://www.ncbi.nlm.nih.gov/books/NBK500456/.

    Google Scholar 

  22. Liu L, Nagashima K, Yasuda T, Liu Y, Hu HR, He G, et al. Mutations in KCNJ11 are associated with the development of autosomal dominant, early-onset type 2 diabetes. Diabetologia. 2013;56(12):2609–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sood S, Landreth H, Bustinza J, Chalmers L, Thukaram R. Neonatal diabetes: case report of a 9-week-old presenting diabetic Ketoacidosis Due to an activating ABCC8 gene mutation. Journal of Investigative Medicine High Impact Case Reports. 2017;5(1):2324709617698718.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pearson ER, Badman MK, Lockwood CR, Clark PM, Ellard S, Bingham C, et al. Contrasting diabetes phenotypes associated with hepatocyte nuclear factor-1alpha and -1beta mutations. Diabetes Care. 2004;27(5):1102–7.

    Article  CAS  PubMed  Google Scholar 

  25. Tonooka N, Tomura H, Takahashi Y, Onigata K, Kikuchi N, Horikawa Y, et al. High frequency of mutations in the HNF-1alpha gene in non-obese patients with diabetes of youth in Japanese and identification of a case of digenic inheritance. Diabetologia. 2002;45(12):1709–12. Dec.

    Article  CAS  PubMed  Google Scholar 

  26. Clissold RL, Hamilton AJ, Hattersley AT, Ellard S, Bingham C. HNF1B-associated renal and extra-renal disease-an expanding clinical spectrum. Nat Rev Nephrol. 2015;11(2):102–12. https://doi.org/10.1038/nrneph.2014.232.

    Article  CAS  PubMed  Google Scholar 

  27. Edghill EL, Bingham C, Slingerland AS, Minton JA, Noordam C, Ellard S, et al. Hepatocyte nuclear factor‑1 beta mutations cause neonatal diabetes and intrauterine growth retardation: support for a critical role of HNF-1beta in human pancreatic development. Diabet Med. 2006;23(12):1301–6.

    Article  CAS  PubMed  Google Scholar 

  28. Weber P, Ambrosova P, Canov P, Weberova D, Kuklinek P, Meluzinova H, et al. GAD antibodies in T1D and LADA—relations to age, BMI, c‑peptide, IA‑2 and HLA-DRB1*03 and DRB1*04 alleles. Adv Gerontol. 2011;24(2):312–8.

    CAS  PubMed  Google Scholar 

  29. Urbanová J, Rypáčková B, Procházková Z, Kučera P, Cerná M, Anděl M, et al. Positivity for islet cell autoantibodies in patients with monogenic diabetes is associated with later diabetes onset and higher HbA1c level. Diabet Med. 2014;31(4):466–71.

    Article  CAS  PubMed  Google Scholar 

  30. Molven A, Ringdal M, Nordbø AM, Raeder H, Støy J, Lipkind GM, et al. Mutation in the insulin gene can cause MODY and antibody-negative type 1 DM. Diabetes. 2008;57:1034–42.

    Article  CAS  Google Scholar 

  31. Kahn SE, Cooper ME, Del Prato S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present and future. Lancet. 2014;383(9922):1068–83. https://doi.org/10.1016/S0140-6736(13)62154-6.

    Article  CAS  PubMed  Google Scholar 

  32. Stride A, Vaxillaire M, Tuomi T, et al. The genetic abnormality in the beta cell determines the response to an oral glucose load. Diabetologia. 2002;45:427–35. https://doi.org/10.1007/s00125-001-0770-9.

    Article  CAS  PubMed  Google Scholar 

  33. Pearson ER, Liddell WG, Shepherd M, Corrall RJ, Hattersley AT. Sensitivity to sulphonylureas in patients with hepatocyte nuclear factor-1alpha gene mutations: evidence for pharmacogenetics in diabetes. Diabet Med. 2000;17(7):543–5.

    Article  CAS  PubMed  Google Scholar 

  34. McDonald TJ, Shields BM, Lawry J, Owen KR, Gloyn AL, Ellard S, et al. High sensitivity CRP discriminates HNF1A-MODY from other subtypes of diabetes. Diabetes Care. 2011;34(8):1860–2.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pearson ER, Boj SF, Steele AM, Barrett T, Stals K, Shield JP, et al. Macrosomia and hyperinsulinaemic hypoglycaemia in patients with heterozygous mutations in the HNF4A gene. PLoS Med. 2007;4(4):e118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fajans SS, Bell GI, Paz VP, et al. Obesity and hyperinsulinemia in a family with pancreatic agenesis and MODY caused by the IPF1 mutation Pro63fsX60. Transl Res. 2010;156(1):7–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Malecki MT, Jhala U, Antonellis A, Fields L, Doria A, Orban T, et al. Mutations in NEUROD1 are associated with the development of type two diabetes. Nat Genet. 1999;23:323–8. https://doi.org/10.1038/15500.

    Article  CAS  PubMed  Google Scholar 

  38. Borowiec M, Liew CW, Thompson R, Boonyasrisawat W, Hu J, Mlynarski WM, et al. Mutations at the BLK locus linked to maturity onset diabetes of the young and beta-cell dysfunction. Proc Natl Acad Sci U S A. 2009;106:14460–5.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Neve B, Fernandez-Zapico ME, Ashkenazi-Katalan V, Dina C, Hamid YH, Joly E, et al. Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function. Proc Natl Acad Sci U S A. 2005;102:4807–12. https://doi.org/10.1073/pnas.0409177102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Plengvidhya N, Kooptiwut S, Songtawee N, Doi A, Furuta H, Nishi M, et al. PAX4 mutations in Thais with maturity onset diabetes of the young. J Clin Endocrinol Metab. 2007;92:2821–6.

    Article  CAS  PubMed  Google Scholar 

  41. Prundate S, Jungtrakoon P, Marucci A, Ludovico O, Buranasupkajorn P, Mazza T, et al. Loss-of-function mutations in APPL1 in familial diabetes mellitus. Am J Hum Genet. 2015;97:177–85. https://doi.org/10.1016/j.ajhg.2015.05.011.

    Article  CAS  Google Scholar 

  42. Raeder H, Johansson S, Holm PI, Haldorsen IS, Mas E, Sbarra V, et al. Mutations in the CEL VNTR cause a syndrome of diabetes and pancreatic exocrine dysfunction. Nat Genet. 2006;38:54–62.

    Article  CAS  PubMed  Google Scholar 

  43. Gjesing AP, Rui G, Lauenborg J, et al. High prevalence of diabetes-predisposing variants in MODY genes among Danish women with gestational diabetes mellitus. J Endocr Soc. 2017;1(6):681–90. https://doi.org/10.1210/js.2017-00040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. American Diabetes Association. Classification and diagnosis of diabetes: standards of medical care in diabetesd 2018. Diabetes Care. 2018;41(Suppl. 1):S13–S27. https://doi.org/10.2337/dc18-S002.

    Article  Google Scholar 

  45. Chakera AJ, Steele AM, Gloyn A, et al. Recognition and management of individuals with hyperglycemia because of heterozygous glucokinase mutations. Diabetes Care. 2015;38:1383–92.

    Article  CAS  PubMed  Google Scholar 

  46. Chakera AJ, Spyer G, Vincent N, Ellard S, Hattersley AT, Dunne FP. The 0.1% of the population with glucokinase monogenic diabetes can be recognized by clinical characteristics in pregnancy: the Atlantic Diabetes in Pregnancy cohort. Diabetes Care. 2014;37:1230–6.

    Article  CAS  PubMed  Google Scholar 

  47. Rudland VL, Hinchcliffe M, Pinner J, Cole S, Mercorella B, et al. Identifying glucokinase monogenic diabetes in a multiethnic gestational diabetes mellitus cohort: new pregnancy screening criteria and utility of HbA1c. Diabetes Care. 2016;39(1):50–2. https://doi.org/10.2337/dc15-1001.

    Article  CAS  PubMed  Google Scholar 

  48. Flack JR, Ross GP, Cheung NW. GCK monogenic diabetes and gestational diabetes: possible diagnosis on clinical grounds. Diabet Med. 2015;32(12):1596–601. https://doi.org/10.1111/dme.12830.

    Article  CAS  PubMed  Google Scholar 

  49. Lachance CH. Practical aspects of monogenic diabetes: a clinical point of view. Canadian Journal of Diabetes. 2016;40(5):368–75.

    Article  PubMed  Google Scholar 

  50. Bellanné-Chantelot C, Lévy DJ, Carette C, Saint-Martin C, Riveline JP, Larger E, et al. Clinical characteristics and diagnostic criteria of maturity-onset diabetes of the young (MODY) due to molecular anomalies of the HNF1A gene. J Clin Endocrinol Metab. 2011;96:1346–51.

    Article  CAS  Google Scholar 

  51. Sung-Hoon K. Maturity-onset diabetes of the young: what do clinicians need to know? Diabetes Metab J. 2015;39(6):468–77.

    Article  Google Scholar 

Download references

Acknowledgements

Special thanks to Michael Allen for language editing. The paper was supported by PROGRES Q36 and by MH CZ-DRO (“Kralovske Vinohrady University Hospital —FNKV, 00064173”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludmila Brunerova M.D., Ph.D..

Ethics declarations

Conflict of interest

J. Urbanova, L. Brunerova, and J. Broz declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urbanova, J., Brunerova, L. & Broz, J. How can maturity-onset diabetes of the young be identified among more common diabetes subtypes?. Wien Klin Wochenschr 131, 435–441 (2019). https://doi.org/10.1007/s00508-019-01543-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00508-019-01543-6

Keywords

Navigation