Skip to main content
Log in

A radiation-hard curvature compensated bandgap voltage reference

Eine strahlungsfeste Curvature-kompensierte Bandgap-Spannungsreferenz

  • Originalarbeit
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

Abstract

In this work a radiation-hardened bandgap voltage reference circuit is presented. The circuit is targeted at precision applications, where trimming can be used to achieve a temperature coefficient smaller than \(5~\mbox{ppm}/\mbox{K}\). Curvature compensation is employed and trimming of the temperature coefficient and the curvature is possible. In order to achieve good performance several techniques were combined. Radiation hardening techniques on layout level were used along with design techniques to improve the robustness against total ionizing dose (TID) and process variations. The radiation hardness requirements were set after preliminary irradiation tests. At the layout level optimized transistors were used while at the topology level, a radiation-hardened trimming scheme was employed to mitigate the impact of leakage currents. Chopping techniques were required to ensure good performance over the process and temperature variations. The bandgap was realized in a standard 180 nm CMOS process and circuit performance was verified using extensive simulations.

Zusammenfassung

In dieser Arbeit wird eine strahlungsgehärtete Bandgap-Spannungsreferenzschaltung vorgestellt. Die Schaltung ist auf Präzisionsanwendungen ausgelegt, wo Trimming verwendet werden kann, um einen Temperaturkoeffizienten von weniger als 5 ppm/K zu erreichen. Es wird eine Curvature-Kompensation verwendet, um Trimmen des Temperaturkoeffizienten und der Krümmung zu ermöglichen. Um eine gute Leistung zu erzielen, wurden verschiedene Techniken kombiniert. Strahlungshärtungstechniken auf Layout-Ebene wurden zusammen mit Designtechniken verwendet, um die Robustheit gegen die Gesamtdosis ionisierender Strahlung (Total Ionzing Dose, TID) und Prozessschwankungen zu verbessern. Die Anforderungen an die Strahlungshärte wurden nach ersten Bestrahlungstests festgelegt. Auf der Layout-Ebene wurden optimierte Transistoren verwendet, während auf der Topologie-Ebene ein strahlengehärtetes Trimmschema verwendet wurde, um die Auswirkungen von Leckströmen zu mindern. Chopping war erforderlich, um eine gute Performance trotz Prozess- und Temperaturschwankungen sicherzustellen. Die Bandgap-Referenz wurde in einem Standard-180-nm-CMOS-Prozess realisiert, und die Schaltungsleistung wurde mit umfangreichen Simulationen verifiziert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  1. Banba, H., Shiga, H., Umezawa, A., Miyaba, T., Tanzawa, T., Atsumi, S., Sakui, K. (1999): A CMOS bandgap reference circuit with sub-1-V operation. IEEE J. Solid-State Circuits, 34(5), 670–674. https://doi.org/10.1109/4.760378.

    Article  Google Scholar 

  2. Bezhenova, V., Michalowska-Forsyth, A. (2016): Total ionizing dose effects on MOS transistors fabricated in 0.18 μm CMOS technology. In 2016 Asia-Pacific international symposium on electromagnetic compatibility (APEMC) (Vol. 01, pp. 366–369). https://doi.org/10.1109/APEMC.2016.7522739.

    Chapter  Google Scholar 

  3. Bezhenova, V., Michalowska-Forsyth, A. M. (2016): Effects of ionizing radiation on integrated circuits. E&I, Elektrotech. Inf.tech., 133(1), 39–42. https://doi.org/10.1007/s00502-015-0380-8.

    Article  Google Scholar 

  4. Brokaw, A. (1974): A simple three-terminal IC bandgap reference. In 1974 IEEE international solid-state circuits conference. Digest of technical papers (Vol. XVII, pp. 188–189). https://doi.org/10.1109/ISSCC.1974.1155346.

    Chapter  Google Scholar 

  5. Faccio, F., Cervelli, G. (2005): Radiation-induced edge effects in deep submicron CMOS transistors. IEEE Trans. Nucl. Sci., 52(6), 2413–2420. https://doi.org/10.1109/TNS.2005.860698.

    Article  Google Scholar 

  6. Gaillardin, M., Goiffon, V., Girard, S., Martinez, M., Magnan, P., Paillet, P. (2011): Enhanced radiation-induced narrow channel effects in commercial 0.18 μm bulk technology. IEEE Trans. Nucl. Sci., 58(6), 2807–2815. https://doi.org/10.1109/TNS.2011.2170854.

    Article  Google Scholar 

  7. Li, T., Yang, Y., Liu, T. (2016): Total ionizing dose response of 0.18 UM narrow channel I/O nMOSFETS. In 2016 13th IEEE international conference on solid-state and integrated circuit technology (ICSICT) (pp. 1209–1211). https://doi.org/10.1109/ICSICT.2016.7998694.

    Google Scholar 

  8. Malcovati, P., Maloberti, F., Fiocchi, C., Pruzzi, M. (2001): Curvature-compensated BiCMOS bandgap with 1-V supply voltage. IEEE J. Solid-State Circuits, 36(7), 1076–1081. https://doi.org/10.1109/4.933463.

    Article  Google Scholar 

  9. Manghisoni, M., Ratti, L., Re, V., Speziali, V. (2002): Radiation hardness perspectives for the design of analog detector readout circuits in the 0.18-μm CMOS generation. IEEE Trans. Nucl. Sci., 49(6), 2902–2909. https://doi.org/10.1109/TNS.2002.805413.

    Article  Google Scholar 

  10. Nowlin, N., Bailey, J., Turfler, B., Alexander, D. (2004): A total-dose hardening-by-design approach for high speed mixed-signal CMOS integrated circuits. Int. J. High Speed Electron. Syst., 14, 367–378.

    Article  Google Scholar 

  11. Oldham, T., McLean, F. (2003): Total ionizing dose effects in MOS oxides and devices. IEEE Trans. Nucl. Sci., 50(3), 483–499. https://doi.org/10.1109/TNS.2003.812927.

    Article  Google Scholar 

  12. Pan, D., Li, H., Wilamowski, B. (2003): A radiation-hard phase-locked loop. In 2003 IEEE international symposium on industrial electronics (Vol. 2, pp. 901–906). https://doi.org/10.1109/ISIE.2003.1267941.

    Google Scholar 

  13. Shetler, K. J., Atkinson, N. M., Holman, W. T., Kauppila, J. S., Loveless, T. D., Witulski, A. F., Bhuva, B. L., Zhang, E. X., Massengill, L. W. (2015): Radiation hardening of voltage references using chopper stabilization. IEEE Trans. Nucl. Sci., 62(6), 3064–3071. https://doi.org/10.1109/TNS.2015.2499171.

    Article  Google Scholar 

  14. Song, B. S., Gray, P. R. (1983): A precision curvature-compensated CMOS bandgap reference. IEEE J. Solid-State Circuits, 18(6), 634–643. https://doi.org/10.1109/JSSC.1983.1052013.

    Article  Google Scholar 

  15. Tsividis, Y. P. (1980): Accurate analysis of temperature effects in I/SUB c/V/SUB BE/ characteristics with application to bandgap reference sources. IEEE J. Solid-State Circuits, 15(6), 1076–1084. https://doi.org/10.1109/JSSC.1980.1051519.

    Article  Google Scholar 

  16. Widlar, R. J. (1971): New developments in IC voltage regulators. IEEE J. Solid-State Circuits, 6(1), 2–7. https://doi.org/10.1109/JSSC.1971.1050151.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Auer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Auer, M., Bezhenova, V. A radiation-hard curvature compensated bandgap voltage reference. Elektrotech. Inftech. 135, 3–9 (2018). https://doi.org/10.1007/s00502-018-0591-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-018-0591-x

Keywords

Schlüsselwörter

Navigation