Artificial lizard search optimization (ALSO): a novel nature-inspired meta-heuristic algorithm

Abstract

Redheaded Agama lizards attack their prey in a well-organized manner. This work models the dynamic foraging behaviour of Agama lizards and their effective way of capturing prey into a mathematical model named as artificial lizard search optimization (ALSO) algorithm. The idea is based on a recent study in which the researchers reported that the lizards control the swing of their tails in a measured manner to redirect angular momentum from their bodies to their tails, stabilizing body attitude in the sagittal plane. A balanced lumping (between body and tail angles) plays a significant role in capturing the prey in a shot. In formulating the optimization problem, a swarm of lizard are considered that are hunting for the prey. To study the performance of the proposed ALSO, it has been simulated. A comparative study is done with some well-known nature-inspired optimization techniques on classical unimodal, multimodal and other benchmark functions. Further, the algorithm is also tested on an object detection application. The result proves the effectiveness of the proposed ALSO algorithm over other nature-inspired state of the art.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abedinia O, Amjady N, Ghasemi A (2016) A new metaheuristic algorithm based on shark smell optimization. Complexity 21(5):97–116

    MathSciNet  Article  Google Scholar 

  2. Arnay R, Fumero F, Sigut J (2017) Ant colony optimization-based method for optic cup segmentation in retinal images. Appl Soft Comput 52:409–417

    Article  Google Scholar 

  3. Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 169:1–12

    Article  Google Scholar 

  4. Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: 2007 IEEE Congress on evolutionary computation, pp 4661–4667

  5. Basturk B, Karaboga D (2006) An artificial bee colony (ABC) algorithm for numeric function optimization. In: IEEE swarm intelligence symposium, vol 8, pp 687–697

  6. Baykasog A, Akpinar S (2017) Weighted superposition attraction (WSA): a swarm intelligence algorithm for optimization problems-part 1: unconstrained optimization. Appl Soft Comput 56:520–540

    Article  Google Scholar 

  7. Borji A, Cheng MM, Jiang H, Li J (2015) Salient object detection: a benchmark. IEEE Trans Image Process 24(12):5706–5722

    MathSciNet  MATH  Article  Google Scholar 

  8. Boussaid I, Lepagnot J, Siarry P (2013) A survey on optimization metaheuristics. Inf Sci 237:82–117

    MathSciNet  MATH  Article  Google Scholar 

  9. Cheng M-Y, Lien L-C (2012) Hybrid artificial intelligence-based PBA for benchmark functions and facility layout design optimization. J Comput Civ Eng 26(5):612–624

    Article  Google Scholar 

  10. Das S, Suganthan PN (2011) Differential evolution: a survey of the state-of-the-art. IEEE Trans Evol Comput 15(1):4–31

    Article  Google Scholar 

  11. Dhiman G, Kumar V (2017) Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Adv Eng Softw 114:48–70

    Article  Google Scholar 

  12. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1(4):28–39

    Article  Google Scholar 

  13. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science. IEEE, pp 39–43

  14. Erlich I, Rueda JL, Wildenhues S, Shewarega F (2014) Solving the IEEE-CEC 2014 expensive optimization test problems by using single-particle MVMO. 2014 IEEE Congress on evolutionary computation (CEC) July 6–11. Beijing, China

  15. Fan C, Zheng N, Zheng J, Xiao L, Liu Y (2020) Kinetic-molecular theory optimization algorithm using opposition based learning and varying accelerated motion. Soft Comput 24:12709–12730

    Article  Google Scholar 

  16. Fausto F, Cuevas E, Valdivia A, González A (2017) A global optimization algorithm inspired in the behavior of selfish herds. Biosystems 160:39–55

    Article  Google Scholar 

  17. Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17(12):4831–4845

    MathSciNet  MATH  Article  Google Scholar 

  18. Gandomi A, Yang X, Talatahari S, Alavi A (2013) Metaheuristic applications in structures and infrastructures. Elsevier Science, Amsterdam

    Google Scholar 

  19. Gao KZ, Suganthan PN, Chua TJ, Chong CS, Cai TX, Pan QK (2015) A two-stage artificial bee colony algorithm scheduling flexible job-shop scheduling problem with new job insertion. Expert Syst Appl 42(21):7652–7663

    Article  Google Scholar 

  20. Ghambari S, Rahati A (2017) An improved artificial bee colony algorithm and its application to reliability optimization problems. Appl Soft Comput. https://doi.org/10.1016/j.asoc.2017.10.040

    Article  Google Scholar 

  21. Ghosh A, Das S, Mullick SS, Mallipeddi R, Das AK (2017) A switched parameter differential evolution with optional blending crossover for scalable numerical optimization. Appl Soft Comput 57:329–352

    Article  Google Scholar 

  22. Gogna A, Tayal A (2013) Metaheuristics: review and application. J Exp Theor Artif Intell 25(4):503–526

    Article  Google Scholar 

  23. Hashim FA, Houssein EH, Mabrouk MS, Al-Atabany W, Mirjalili S (2019) Henry gas solubility optimization: a novel physics-based algorithm. Future Gener Comput Syst 101:646–667. https://doi.org/10.1016/j.future.2019.07.015

    Article  Google Scholar 

  24. He S, Wu QH, Saunders JR (2009) Group search optimizer: an optimization algorithm inspired by animal searching behavior. IEEE Trans Evol Comput 13(5):973–990

    Article  Google Scholar 

  25. Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  26. Jahani E, Chizari M (2018) Tackling global optimization problems with a novel algorithm-mouth brooding fish algorithm. Appl Soft Comput 62:987–1002

    Article  Google Scholar 

  27. Jain M, Singh V, Rani A (2019) A novel nature-inspired algorithm for optimization: squirrel search algorithm. Swarm Evol Comput. https://doi.org/10.1016/j.swevo.2018.02.013

    Article  Google Scholar 

  28. Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta Mech 213(3):267–289

    MATH  Article  Google Scholar 

  29. Kaveh A, Farhoudi N (2013) A new optimization method: dolphin echolocation. Adv Eng Softw 59:53–70

    Article  Google Scholar 

  30. Kaveh A, Dadras A (2017) A novel meta-heuristic optimization algorithm: thermal exchange optimization. Adv Eng Softw 110:69–84

    Article  Google Scholar 

  31. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    MathSciNet  MATH  Article  Google Scholar 

  32. Konar D, Bhattacharyya S, Sharma K, Sharma S, Pradhan SR (2017) An improved hybrid quantum-inspired genetic algorithm (HQIGA) for scheduling of real-time task in multiprocessor system. Appl Soft Comput 53:296–307

    Article  Google Scholar 

  33. Kumar N, Vidhyarthi DP (2016) A model for resource constrained project scheduling using adaptive-PSO. Soft Comput 20:1565–1580. https://doi.org/10.1007/s00500-015-1606-8

    Article  Google Scholar 

  34. Li X (2003) A new intelligent optimization-artificial fish swarm algorithm. Doctor thesis, Zhejiang University of Zhejiang, China

  35. Li MD, Zhao H, Weng XW, Han T (2016) A novel nature-inspired algorithm for optimization: virus colony search. Adv Eng Softw 92:65–88

    Article  Google Scholar 

  36. Liang J, Qu B, Suganthan P (2013) Problem definitions, and evaluation criteria for the CEC, 2014 special session and competition on single objective real-parameter numerical optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore

  37. Libby T, Moore T, Chang-Siu E, Li D, Cohen D, Jusufi A, Full R (2012) Tail-assisted pitch control in lizards, robots and dinosaurs. Nat Lett 481:181–184

    Article  Google Scholar 

  38. Liu T, Yuan Z, Sun J, Wang J, Zheng N, Tang X, Shum HY (2010) Learning to detect a salient object. IEEE Trans Pattern Anal Mach Intell 33(2):353–367

    Google Scholar 

  39. Logesh R, Subramaniyaswamy V, Vijayakumar V, Gao X-Z, Indragandhi V (2017) A hybrid quantum-induced swarm intelligence clustering for the urban trip recommendation in smart city. Future Gener Comput Syst. https://doi.org/10.1016/j.future.2017.08.060

    Article  Google Scholar 

  40. Martin R, Stephen W (2006) Termite: a swarm intelligent routing algorithm for mobilewireless Ad-Hoc networks. In: Stigmergic optimization. Springer, pp 155–184

  41. Méndez E, Castillo O, Soria J, Sadollah A (2017) Fuzzy dynamic adaptation of parameters in the water cycle algorithm. In: Melin P, Castillo O, Kacprzyk J (eds) Nature-inspired design of hybrid intelligent systems. Springer, Berlin, pp 297–311

    Google Scholar 

  42. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98

    Article  Google Scholar 

  43. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073

    MathSciNet  Article  Google Scholar 

  44. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  45. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  46. Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2):495–513

    Article  Google Scholar 

  47. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Article  Google Scholar 

  48. Mohammad A, Mostafa H-K, Reza T-M (2020) Red deer algorithm (RDA): a new nature-inspired meta-heuristic. Soft Comput 24:14637–14665

    Article  Google Scholar 

  49. Mucherino A, Seref O, Seref O, Kundakcioglu OE, Pardalos P (2007) Monkey search: a novel metaheuristic search for global optimization. In: AIP conference proceedings, vol 953, AIP, pp 162–173

  50. Nematollahi AF, Rahiminejad A, Vahidi B (2017) A novel physical based meta-heuristic optimization method known as Lightning Attachment Procedure Optimization. Appl Soft Comput 59:596–621

    Article  Google Scholar 

  51. Nguyen P, Kim J-M (2016) Adaptive ECG denoising using genetic algorithm-based thresholding and ensemble empirical mode decomposition. Inf Sci 373:499–511

    Article  Google Scholar 

  52. Noshadi A, Shi J, Lee WS, Shi P, Kalam A (2016) Optimal PID-type fuzzy logic controller for a multi-input multi-output active magnetic bearing system. Neural Comput Appl 27(7):2031–2046

    Article  Google Scholar 

  53. Pan W-T (2012) A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowl Based Syst 26:69–74

    Article  Google Scholar 

  54. Peraza C, Valdez F, Garcia M, Melin P, Castillo O (2016) A new fuzzy harmony search algorithm using fuzzy logic for dynamic parameter adaptation. Algorithms 9(4):69

    MathSciNet  MATH  Article  Google Scholar 

  55. Qi X, Zhu Y, Zhang H (2017) A new meta-heuristic butterfly-inspired algorithm. J Comput Sci 23:226–239

    MathSciNet  Article  Google Scholar 

  56. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    MATH  Article  Google Scholar 

  57. Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput 13(5):2592–2612

    Article  Google Scholar 

  58. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47

    Article  Google Scholar 

  59. Shareef H, Ibrahim AA, Mutlag AH (2015) Lightning search algorithm. Appl Soft Comput 36:315–333

    Article  Google Scholar 

  60. Singh N, Arya R, Agrawal RK (2014) A novel approach to combine features for salient object detection using constrained particle swarm optimization. Pattern Recogn 47(4):1731–1739

    Article  Google Scholar 

  61. Singh N, Arya R, Agrawal RK (2018) Performance enhancement of salient object detection using superpixel based Gaussian mixture model. Multimed Tools Appl 77(7):8511–8529

    Article  Google Scholar 

  62. Singh N, Mishra KK, Bhatia S (2020) SEAM-an improved environmental adaptation method with real parameter coding for salient object detection. Multimed Tools Appl 79:12995–13010

    Article  Google Scholar 

  63. Sun G, Liu Y, Yang M, Wang A, Liang S, Zhang Y (2017) Coverage optimization of VLC in smart homes based on improved cuckoo search algorithm. Comput Netw 116:63–78

    Article  Google Scholar 

  64. Tabari A, Ahmad A (2017) A new optimization method: electro-search algorithm. Comput Chem Eng 103:1–11

    Article  Google Scholar 

  65. Talbi E (2009) Metaheuristics: from design to implementation. Wiley series on parallel and distributed computing. Wiley, Hoboken

    Google Scholar 

  66. Uymaz SA, Tezel G, Yel E (2015) Artificial algae algorithm (AAA) for nonlinear global optimization. Appl Soft Comput 31:153–171

    Article  Google Scholar 

  67. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Article  Google Scholar 

  68. Yang X-S (2009) Firefly algorithms for multimodal optimization. In: International symposium on stochastic algorithms. Springer, pp 169–178

  69. Yang X-S (2010) A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, pp 65–74

  70. Yang X-S (2012) Flower pollination algorithm for global optimization. In: International conference on unconventional computing and natural computation. Springer, pp 240–249

  71. Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: World Congress on nature biologically inspired computing, vol 2009. NaBIC, pp 210–214

  72. Yang X, Gandomi A, Talatahari S, Alavi A (2012) Metaheuristics in water, geotechnical and transport engineering. Elsevier Science, Amsterdam

    Google Scholar 

  73. Yang X, Cui Z, Xiao R, Gandomi A, Karamanoglu M (2013) Swarm intelligence and bio-inspired computation: theory and applications. Elsevier insights, Elsevier Science, Amsterdam

    Google Scholar 

  74. Yeh J-F, Chen T-Y, Chiang T-C (2019) Modified L-SHADE, for single objective real-parameter optimization, 2019 IEEE Congress on Evolutionary Computation (CEC). Wellington, New Zealand, New Zealand. https://doi.org/10.1109/CEC.2019.8789991

  75. Yong W, Tao W, Cheng-Zhi Z, Hua-Juan H (2016) A new stochastic optimization approach dolphin swarm optimization algorithm. Int J Comput Intell Appl 15(02):1650011. https://doi.org/10.1142/S1469026816500115

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Deo Prakash Vidyarthi.

Ethics declarations

Conflict of interest

All the authors of this manuscript declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Singh, N. & Vidyarthi, D.P. Artificial lizard search optimization (ALSO): a novel nature-inspired meta-heuristic algorithm. Soft Comput (2021). https://doi.org/10.1007/s00500-021-05606-7

Download citation

Keywords

  • Soft computing
  • Meta-heuristic
  • Optimization techniques
  • Agama lizard
  • Nature-inspired algorithm