Automated compliance checking in the context of Industry 4.0: from a systematic review to an empirical fuzzy multi-criteria approach

Abstract

Nowadays, the industry is undergoing the Fourth Industrial Revolution, and techniques and algorithms for automated compliance checking (ACC) are continually being improved, generalized and flexible with the use of semantic and logic-based representations. However, there is still a lack of research that addresses advances in ACC tools headed for the Industry 4.0 (I4.0) perspective and that point out practitioners’ perceptions concerning the current application of these technologies. In this sense, this paper aims to conduct a systematic review to identify the main automated code-checking tools to regulatory compliance in the I4.0 era, indicating new trends and possible gaps, and then ranking the selected technologies with the support of two soft hybrid multi-criteria decision-making techniques. By content analysis, we identified and categorized seven main technologies used to ACC in several industrial areas. As a practical example of group decision-making and modeling of uncertainty, we implemented fuzzy analytical hierarchical process to aggregate different perspectives and obtain the criteria weights and combined it with TOPSIS and VIKOR methods. To do this, by means of expert panel, we evaluated practitioner’s perception about the surveyed technologies concerning the ISO/IEC 9126 standard. The results indicate that both methods have shown similar rankings, and although portability was considered the most relevant criterion, open-source tools are key issues when choosing ACC technologies. Several further research trends were also pointed out through this theoretical–empirical approach, such as the use of natural language processing, declarative rule processing and flow-based processing.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Almeida AT (2013) Processo de Decisão nas Organizações—Construindo modelos de multicritério. Atlas, São Paulo

    Google Scholar 

  2. Altinel B, Ganiz MC (2018) Semantic text classification: a survey of past and recent advances. Inf Process Manage 54(6):1129–1153. https://doi.org/10.1016/j.ipm.2018.08.001

    Article  Google Scholar 

  3. Awad A, Decker G, Weske M (2008) Efficient compliance checking using BPMN-Q and temporal logic. In: Dumas M, Reichert M, Shan MC (eds) Business process management. BPM 2008. Lecture notes in computer science, vol 5240. https://doi.org/10.1007/978-3-540-85758-7_24

  4. Awad A, Smirnov S, Weske M (2009) Resolution of compliance violation in business process models: a planning-based approach. In: Meersman R, Dillon T, Herrero P (eds) On the move to meaningful internet systems: OTM 2009. OTM 2009. Lecture notes in computer science, vol 5870. https://doi.org/10.1007/978-3-642-05148-7_4

  5. Awasthi A, Chauhan SS, Goyal SK (2010) A fuzzy multicriteria approach for evaluating environmental performance of suppliers. Int J Prod Econ 126:370–378

    Article  Google Scholar 

  6. Bagheri M, Shojaei P, Khorami MT (2018) A comparative survey of the condition of tourism infrastructure in Iranian Provinces using VIKOR and TOPSIS. Decis Sci Lett 7:87–102. https://doi.org/10.5267/j.dsl.2017.4.001

    Article  Google Scholar 

  7. BanaeCosta CA, De Corte JM, Vansnick JC (2012) MACBETH. Int J Inf Technol Decis Mak 11(02):359–387

    Article  Google Scholar 

  8. Bard JF (1992) A comparison of the analytic hierarchy process with multi attribute utility theory: a case study. IIE Trans. https://doi.org/10.1080/07408179208964251

    Article  Google Scholar 

  9. Barros CP, Wanke P (2015) An analysis of African airlines efficiency with two-stage TOPSIS and neural networks. J Air Transp Manag 44–45:90–102. https://doi.org/10.1016/j.jairtraman.2015.03.002

    Article  Google Scholar 

  10. Becker J, Delfmann P, Dietrich HA, Steinhorst M, Eggert M (2016) Business process compliance checking: applying and evaluating a generic pattern matching approach for conceptual models in the financial sector. Inf Syst Front 18(2):359–405. https://doi.org/10.1007/s10796-014-9529-y

    Article  Google Scholar 

  11. Behzadian M, Otaghsara SK, Yazdani M, Ignatius J (2012) A state-of the-art survey of TOPSIS applications. Expert Syst Appl 39:13051–13069

    Article  Google Scholar 

  12. Bicaku A, Schmittner C, Tauber M, Delsing J (2018) Monitoring industry 4.0 applications for security and safety standard compliance. IEEE Industrial Cyber-Physical Systems (ICPS), St. Petersburg, pp 749–754. https://doi.org/10.1109/ICPHYS.2018.8390801

    Google Scholar 

  13. Bonilla SH, Silva HR, da Silva MT, Gonçalves RF, Sacomano JB (2018) Industry 4.0 and sustainability implications: a scenario-based analysis of the impacts and challenges. Sustainability 10:3740. https://doi.org/10.3390/su10103740

    Article  Google Scholar 

  14. Booth A, Harris J, Croot E, Springett J, Campbell F, Wilkins E (2013) Towards a methodology for cluster searching to provide conceptual and contextual “richness” for systematic reviews of complex interventions: case study (CLUSTER). BMC Med Res Methodol 13:118. https://doi.org/10.1186/1471-2288-13-118

    Article  Google Scholar 

  15. Brans JP (1982) L’ingénierie de la décision: élaboration d’instruments d’aide à la décision. La méthode PROMETHEE. Presses de l’Université Laval

  16. Breaux TD, Antón AI (2007) A systematic method for acquiring regulatory requirements: a frame-based approach. In: 6th international workshop on requirements for high assurance systems (RHAS-6)

  17. Caiado RGG, Lima GBA, Gavião LO, Quelhas OLG, Paschoalino FF (2017) Sustainability analysis in electrical energy companies by similarity technique to ideal solution. IEEE Latin Am Trans 15(4):675–681. https://doi.org/10.1109/TLA.2017.7896394

    Article  Google Scholar 

  18. Caiado RGG, Scavarda LF, Gavião LO, Ivson P, de Mattos Nascimento DL, Garza-Reyes JA (2021) A fuzzy rule-based industry 4.0 maturity model for operations and supply chain management. Int J Prod Econ 231:107883

    Article  Google Scholar 

  19. Chu MT, Shyu J, Tzeng GH, Khosla R (2007) Comparison among three analytical methods for knowledge communities’ group-decision analysis. Expert Syst Appl 33(4):1011–1024

    Article  Google Scholar 

  20. Dimyadi J, Pauwels P, Amor R (2016) Modelling and accessing regulatory knowledge for computer-assisted compliance audit, ITcon Vol. 21, special issue CIB W78 2015 special track on compliance checking, pp 317–336. http://www.itcon.org/2016/21

  21. Dinmohammadi A, Shafiee M (2017) Determination of the most suitable technology transfer strategy for wind turbines using an integrated AHP-TOPSIS decision model. Energies. https://doi.org/10.3390/en10050642

    Article  Google Scholar 

  22. Eastman C, Lee J, Jeong Y, Lee J (2009) Automatic rule-based checking of building designs. Autom Constr 18:1011–1033. https://doi.org/10.1016/j.autcon.2009.07.002

    Article  Google Scholar 

  23. El Kharbili M (2012) Business process regulatory compliance management solution frameworks: a comparative evaluation. In: Proceedings of the eighth Asia-Pacific conference on conceptual modelling, p 130

  24. Espejo-Garcia B, Martinez-Guanter J, Pérez-Ruiz M, Lopez-Pellicer FJ, Zarazaga-Soria FJ (2018) Machine learning for automatic rule classification of agricultural regulations: a case study in Spain. Comput Electron Agric 150:343–352. https://doi.org/10.1016/j.compag.2018.05.007

    Article  Google Scholar 

  25. Fenz S, Plieschnegger S, Hobel H (2016) Mapping information security standard ISO 27002 to an ontological structure. Inf Comput Secur 24(5):452–473. https://doi.org/10.1108/ICS-07-2015-0030

    Article  Google Scholar 

  26. Fishburn P (1967) Conjoint measurement in utility theory with incomplete product sets. J Math Psychol 4(1):104–119

    MathSciNet  Article  Google Scholar 

  27. Flynn BB, Sakakibara S, Schroeder RG, Bates KA, Flynn EJ (1990) Empirical research methods in operations management. J Oper Manag. https://doi.org/10.1016/0272-6963(90)90098-X

    Article  Google Scholar 

  28. Gordon TF, Governatori G, Rotolo A (2009) Rules and norms: requirements for rule interchange languages in the legal domain. Governatori Hall Paschke 2009:282–296

    Google Scholar 

  29. Governatori G (2005) Representing business contracts in RuleML. World Scientific Publishing Company, Singapore

    Google Scholar 

  30. Groefsema H, van Beest NRTP, Aiello M (2018) A formal model for compliance verification of series compositions. IEEE Trans Serv Comput 11(3):466–479. https://doi.org/10.1109/TSC.2016.2579621

    Article  Google Scholar 

  31. Gupta A, Sundaresan N (2018) Intelligent code reviews using deep learning. KDD’18 Deep Learning Day

  32. Harsanyi JC (1955) Cardinal welfare, individualistic ethics, and interpersonal comparisons of utility. J Polit Econ 63(4):309–321

    Article  Google Scholar 

  33. Hashmi M, Governatori G (2013) A methodological evaluation of business process compliance management frameworks. In: Song M, Wynn MT, Liu J (eds) Asia pacific business process management. AP-BPM 2013. Lecture notes in business information processing, vol 159. https://doi.org/10.1007/978-3-319-02922-1_8

  34. Hashmi M, Governatori G, Wynn MT (2016) Normative requirements for regulatory compliance: an abstract formal framework. Inf Syst Front 18:429–455. https://doi.org/10.1007/s10796-015-9558-1

    Article  Google Scholar 

  35. Hauke A, Georgiadou P, Pinotsi D, Kallio H, Lusa S, Malmelin J, Punakallio A, Pääkkönen R, de Meyer S, Nicolescu GI (2011) Emergency services: a literature review on occupational safety and health risks. EU Publications. https://doi.org/10.2802/54768

    Article  Google Scholar 

  36. Hwang CL, Yoon K (1981) Multiple attribute decision making. In: Lecture notes in economics and mathematical systems, vol 186. Springer, Berlin

  37. Hwang CL, Lai Y, Liu T (1993) A new approach for multiple objective decision making. Comput Oper Res 20–8:889–899. https://doi.org/10.1016/0305-0548(93)90109-V

    Article  MATH  Google Scholar 

  38. Ilal SM, Günaydin HM (2017) Computer representation of building codes for automated compliance checking. Autom Constr 82:43–58. https://doi.org/10.1016/j.autcon.2017.06.018

    Article  Google Scholar 

  39. Jang-Jaccard J, Nepal S (2014) A survey of emerging threats in cybersecurity. J Comput Syst Sci 80:973–993. https://doi.org/10.1016/j.jcss.2014.02.005

    MathSciNet  Article  MATH  Google Scholar 

  40. Jiang Y (2019) A formal model of semantic computing. Soft Comput 23:5411. https://doi.org/10.1007/s00500-018-3502-5

    Article  MATH  Google Scholar 

  41. Kahraman C, Cebebi U, Ruan D (2004) Multi-attribute comparison of catering service companies. Int J Prod Econ 87:171–184. https://doi.org/10.1016/S0925-5273(03)00099-9

    Article  Google Scholar 

  42. Kaliszewski I, Podkopaev D (2016) Simple additive weighting: a metamodel for multiple criteria decision analysis methods. Experts Syst Appl 54:155–161. https://doi.org/10.1016/j.eswa.2016.01.042

    Article  Google Scholar 

  43. Kang S, Haas CT (2018) Evaluating artificial intelligence tools for automated practice conformance checking. In: 35th international symposium on automation and robotics in construction

  44. Keeney R (1977) The art of assessing multiattribute utility functions. Organ Behav Hum Perform IJOR 10(2):56–66

    Google Scholar 

  45. Kharat GM, Murthy S, Jaisingh Kamble S, Raut RD, Kamble SS, Kharat GM (2019) Fuzzy multi-criteria decision analysis for environmentally conscious solid waste treatment and disposal technology selection. Technol Soc. https://doi.org/10.1016/j.techsoc.2018.12.005

    Article  Google Scholar 

  46. Khari M, Kumar P (2019) An extensive evaluation of search-based software testing: a review. Soft Comput 23:1933. https://doi.org/10.1007/s00500-017-2906-y

    Article  Google Scholar 

  47. Kholkar D, Sunkle S, Kulkarni V (2017) Towards automated generation of regulation rule bases using MDA. MODELSWARD. https://doi.org/10.5220/0006216406170628

    Article  Google Scholar 

  48. Kim JH, Ahn BS (2019) Extended VIKOR method using incomplete criteria weights. Experts Syst Appl 126:125–132. https://doi.org/10.1016/J.ESWA.2019.02.019

    Article  Google Scholar 

  49. Kim H, Lee J, Shin J, Choi J (2019) Visual language approach to representing KBimCode-based Korea building code sentences for automated rule checking. J Comput Des Eng 6(2):143–148. https://doi.org/10.1016/j.jcde.2018.08.002

    Article  Google Scholar 

  50. Kubler S, Robert J, Derigent W, Voisin A, Le Traon Y (2016) A state-of the-art survey & testb e d of fuzzy AHP (FAHP) applications. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2016.08.064

    Article  Google Scholar 

  51. Kuo T (2017) A modified TOPSIS with a different ranking index. Eur J Oper Res 260:152–160

    MathSciNet  Article  Google Scholar 

  52. Lee H, Lee J, Park S, Kim I (2016) Translating building legislation into a computer-executable format for evaluating building permit requirements. Autom Constr 71(1):49–61. https://doi.org/10.1016/j.autcon.2016.04.008

    Article  Google Scholar 

  53. Lee JH, Yi J, Son J (2019) Development of automatic-extraction model of poisonous clauses in international construction contracts using rule-based NLP. J Comput Civ Eng. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000807

    Article  Google Scholar 

  54. Lima Junior FR, Carpinetti LCR (2015) Uma comparação entre os métodos TOPSIS e Fuzzy-TOPSIS no apoio à tomada de decisão multicritério para seleção de fornecedores. Gest Prod. https://doi.org/10.1590/0104-530X1190

    Article  Google Scholar 

  55. Liu G, Guo J (2019) Bidirectional LSTM with attention mechanism and convolutional layer for text classification. Neurocomputing 337:325–338. https://doi.org/10.1016/j.neucom.2019.01.078

    Article  Google Scholar 

  56. Lo H, Shiue W, Liou JJ, Tzeng G (2020) A hybrid MCDM-based FMEA model for identification of critical failure modes in manufacturing. Soft Comput. https://doi.org/10.1007/s00500-020-04903-x

    Article  Google Scholar 

  57. Lu J, Zhang G, Ruan D (2008) Intelligent multi-criteria fuzzy group decision-making for situation assessments. Soft Comput 12:289–299. https://doi.org/10.1007/s00500-007-0197-4

  58. Mayring P (2014) Qualitative content analysis: theoretical foundation, basic procedures and software solution. Klagenfurt. https://nbn-resolving.org/urn:nbn:de:0168-ssoar-395173

  59. Mironczuk MM, Protasiewicz J (2018) A recent overview of the state-of-the-art elements of text classification. Experts Syst Appl 106:36–54. https://doi.org/10.1016/j.eswa.2018.03.058

    Article  Google Scholar 

  60. Morgan M, Eichenlaub N (2016) Digital asset management systems: open source or not open source?. In: Proceedings international conference on Dublin core and metadata applications

  61. Mustapha AM, Arogundade OT, Vincent OR, Adeniran OJ (2018) Towards a compliance requirement management for SMSEs: a model and architecture. Form Syst e Bus Manag 16:155–185. https://doi.org/10.1007/s10257-017-0354-y

    Article  Google Scholar 

  62. Nisbet N, Lockley SR, Cerny M, Matthews J, Capper G (2012) Rule driven enhancements of BIM models. https://doi.org/10.1201/b12516-48

    Article  Google Scholar 

  63. Olson DL (1996) Decision aids for selection problems. Springer series in operations research. Springer, Berlin

    Google Scholar 

  64. Opricovic S (1998) Multicriteria optimization of civil engineering systems. Fac Civ Eng Belgrade 2:5–21

  65. Opricovic S, Tzeng G (2004) Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS. Eur J Oper Res 156:445–455. https://doi.org/10.1016/S0377-2217(03)00020-1

    Article  MATH  Google Scholar 

  66. Palmirani M, Governatori G, Rotolo A, Tabet S, Boley H, Paschke A (2011) LegalRuleML: XML-based rules and norms. In: Olken F, Palmirani M, Sottara D (eds) Rule-based modeling and computing on the semantic web. RuleML. Lecture notes in computer science, vol 7018. https://doi.org/10.1007/978-3-642-24908-2_30

  67. Pagani, RN, Kovaleski, JL, Resende, LM (2015) Methodi Ordinatio: a proposed methodology to select and rank relevant scientific papers encompassing the impact factor, number of citation, and year of publication. Scientometrics 105:2109–2135. https://doi.org/10.1007/s11192-015-1744-x

  68. Papathanasiou J, Ploskas N, Bournaris T, Manos B (2016) A decision support system for multiple criteria alternative ranking using TOPSIS and VIKOR: a case study on social sustainability in agriculture. In: International conference on decision support system technology, pp 3–15. https://doi.org/10.1007/978-3-319-32877-5_1

  69. Pauwels P, van Deursen D, Verstraeten R, de Roo J, de Meyer R, Van de Walle R, Van Campenhout J (2011) A semantic rule checking environment for building performance checking. Autom Constr 20(5):506–518. https://doi.org/10.1016/j.autcon.2010.11.017

    Article  Google Scholar 

  70. Penadés-Plà V, Yepes V, García-Segura T (2016) A review of multi-criteria decision-making methods applied to the sustainable bridge design. Sustainability 8:1295

    Article  Google Scholar 

  71. Ploskas N, Papathanasiou J (2019) A decision support system for multiple criteria alternative rankings using TOPSIS and VIKOR in fuzzy and nonfuzzy environments. Fuzzy Sets Syst 377:1–30. https://doi.org/10.1016/j.fss.2019.01.012

    MathSciNet  Article  Google Scholar 

  72. Roy T, Dutta RK (2019) Integrated fuzzy AHP and fuzzy TOPSIS methods for multi-objective optimization of electro discharge machining process. Soft Comput 23:5053. https://doi.org/10.1007/s00500-018-3173-2

    Article  Google Scholar 

  73. Roychoudhury S, Sunkle S, Kholkar D (2017) A domain-specific controlled english language for automated regulatory compliance (industrial paper). Proc ACM SIGPLAN Int Conf Softw Lang Eng. https://doi.org/10.1145/3136014.3136018

    Article  Google Scholar 

  74. Saaty TL (1977) A scaling method for priorities in a hierarchichal structure. J Math Psych 15(3):234–281

    Article  Google Scholar 

  75. Saaty TL (1980) The analytic hierarchy process: planning, priority setting, resources allocation. McGraw-Hill, London

  76. Saaty TL (1996) Decision making with dependence and feedback: the analytic network process. RWS Publications, Pittsburgh

    Google Scholar 

  77. Saaty TL, Tran LT (2007) On the invalidity of fuzzifying numerical judgments in the analytic hierarchy process. Math Comput Model 46(7–8):962–975. https://doi.org/10.1016/j.mcm.2007.03.022

    MathSciNet  Article  MATH  Google Scholar 

  78. Sacha KM (2005). Evaluation of software quality. In: Proceedings on software engineering: evolution and emerging technologies, pp 381–388

  79. Salama DM, El-Gohary NM (2014) Semantic text classification for supporting automated compliance checking in construction. J Comput Civ Eng. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000301

    Article  Google Scholar 

  80. Salvia AL, Brandli LL, Filho WL (2019) An analysis of the applications of Analytic Hierarchy Process (AHP) for selection of energy efficiency practices in public lighting in a sample of Brazilian cities. Energy Policy 132(2019):854–864. https://doi.org/10.1016/j.enpol.2019.06.02

    Article  Google Scholar 

  81. Sebastian R, Asokan S (2017) Process compliance checking using model checker. Int Conf Invent Commun Comput Technol. https://doi.org/10.1109/ICICCT.2017.7975220

    Article  Google Scholar 

  82. Sechilariu M, Locment F (2016) Photovoltaic source modeling and control. Urban DC Microgrid. https://doi.org/10.1016/b978-0-12-803736-2.00002-5

    Article  Google Scholar 

  83. Seuring S, Gold S (2012) Conducting content-analysis based literature reviews in supply chain management. Supply Chain Manag Int J 17(5):544–555. https://doi.org/10.1108/13598541211258609

    Article  Google Scholar 

  84. Sharef NM, Martin T, Kasmiran KA et al (2015) A comparative study of evolving fuzzy grammar and machine learning techniques for text categorization. Soft Comput 19:1701. https://doi.org/10.1007/s00500-014-1358-x

    Article  Google Scholar 

  85. Shekhovtsov A, Salabun W (2020) A comparative case study of the VIKOR and TOPSIS rankings similarity. Proc Comput Sci 176:3730–3740

    Article  Google Scholar 

  86. Shi L, Roman D (2017) From standards and regulations to executable rules: a case study in the building accessibility domain. RuleML + RR

  87. Silva MC, Gavião LO, Gomes CFS, Lima GBA (2017) A proposal for the application of multicriteria analysis to rank countries according to innovation using the indicators provided by the WIPO. Revista de Administração e Inovação 14(3):188–198. https://doi.org/10.1016/j.rai.2017.05.003

    Article  Google Scholar 

  88. Silva MC, Lima GBA, Gomes CFS, Rangel LAD, Caiado RGG (2019) A SMARTS-Choquet’s approach for multicriteria decision aid applied to the innovation indexes in sustainability dimensions. Soft Comput 23(16):7177–7233. https://doi.org/10.1007/s00500-018-3353-0

    Article  Google Scholar 

  89. Sindhu S, Nehra V, Luthra S (2017) Investigation of feasibility study of solar farms deployment using hybrid AHP-TOPSIS analysis: case study of India. Renew Sustain Energy Rev 73:496–511. https://doi.org/10.1016/j.rser.2017.01.135

    Article  Google Scholar 

  90. Sinoara RA, Camacho-Collados J, Rossi RG, Navigli R, Rezende SO (2019) Knowledge enhanced document embeddings for text classification. Knowl Based Syst 163:955–971. https://doi.org/10.1016/j.knosys.2018.10.026

    Article  Google Scholar 

  91. Stein RA, Jaques PA, Valiati JF (2018) An analysis of hierarchical text classification using word embeddings. Inf Sci. https://doi.org/10.1016/j.ins.2018.09.001

    Article  Google Scholar 

  92. Tashi I (2009) Regulatory compliance and information security assurance. IEEE Int Conf Avail Reliab Secur. https://doi.org/10.1109/ARES.2009.29

    Article  Google Scholar 

  93. Taylan O, Alamoudi R, Kabli M, Aljifri A, Ramzi F, Herrera-Viedma E (2020) Assessment of energy systems using extended fuzzy AHP, Fuzzy VIKOR and TOPSIS Approaches to manage non-cooperative opinions. Sustainability 12:2745. https://doi.org/10.3390/su12072745

    Article  Google Scholar 

  94. Thomé AMT, Scavarda LF, Scavarda A (2016) Conducting systematic literature review in operations management. Prod Plan Control. https://doi.org/10.1080/09537287.2015.1129464

    Article  Google Scholar 

  95. Ture H, Dogan S, Kocak D (2019) Assessing euro 2020 strategy using multi-criteria decision making methods: VIKOR and TOPSIS. Soc Indic Res 142(2):645–665

  96. Uhm M, Lee G, Park Y, Kim S, Jung J, Lee J (2015) Requirements for computational rule checking of requests for proposals (RFPs) for building designs in South Korea. Adv Eng Inform 29(3):602–615. https://doi.org/10.1016/j.aei.2015.05.006

    Article  Google Scholar 

  97. van Laarhoven P, Pedrycz W (1983) A fuzzy extension of Saaty’s priority theory. Fuzzy Sets Syst 11(1):199–227

    MathSciNet  MATH  Google Scholar 

  98. Wang WJ, Luoh L (2000) Simple computation for the deffuzifications of center of sum and center of gravity. J Intell Fuzzy Syst 9:53–59

    Google Scholar 

  99. Wang J, Peng J, Zhang H, Chen X (2019) Outranking approach for multi-criteria decision-making problems with hesitant interval-valued fuzzy sets. Soft Comput 23:419–430. https://doi.org/10.1007/s00500-017-2791-4

    Article  MATH  Google Scholar 

  100. Wu Z, Abdul-Nour G (2020) Comparison of multi-criteria group decision-making methods for urban sewer network plan selection. Civil Eng 1:26–48. https://doi.org/10.3390/civileng1010003

  101. Yeoh JK, Wong JH, Peng L (2016) Integrating crane information models in BIM for checking the compliance of lifting plan requirements. In: International association for automation and robotics in construction

  102. Yue C (2019) A projection-based approach to software quality evaluation from the users’ perspectives. Int J Mach Learn Cybernet 10(9):2341–2353

    Article  Google Scholar 

  103. Zadeh L (1965) Fuzzy sets. Inf Control 8:338–353

    Article  Google Scholar 

  104. Zadeh LA (1971) Similarity relations and fuzzy orderings. Inf Sci 3–2:177–200. https://doi.org/10.1016/S0020-0255(71)80005-1

    MathSciNet  Article  MATH  Google Scholar 

  105. Zavadskas EK, Kaklauskas A, Sarka V (1994) The new method of multicriteria complex proportional assessment of projects. Technol Econ Dev Econ 1(3):131–139

    Google Scholar 

  106. Zhang J, El-Gohary NM (2016) Extending building information models semiautomatically using semantic natural language processing techniques. J Comput Civ Eng. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000536

    Article  Google Scholar 

  107. Zhang J, El-Gohary NM (2017) Integrating semantic NLP and logic reasoning into a unified system for fully automated code checking. Autom Constr. https://doi.org/10.1016/j.autcon.2016.08.027

    Article  Google Scholar 

  108. Zhong B, Gan C, Luo H, Xing X (2018) Ontology-based framework for building environmental monitoring and compliance checking under BIM environment. Build Environ 141:127–142. https://doi.org/10.1016/j.buildenv.2018.05.046

    Article  Google Scholar 

  109. Zhou P, El-Gohary NM (2016) Ontology-based multilabel text classification of construction regulatory documents. J Comput Civ Eng 30:4. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000530

    Article  Google Scholar 

  110. Zhou H, Lee S, Ying H (2018) VPL-based code translation for automated compliance checking of building envelope energy efficiency. Constr Res. https://doi.org/10.1061/9780784481301.001

    Article  Google Scholar 

  111. Zlaugotne B, Zihare L, Balode L, Kalnbalkite A, Khabdullin A, Blumberga D (2020) Multi-criteria decision analysis methods comparison. Environ Clim Technol 24(1):454–471. https://doi.org/10.2478/rtuect-2020-0028

    Article  Google Scholar 

Download references

Funding

This study was funded by Agência Nacional do Petróleo, Gás Natural e Biocombustíveis—ANP (Grant Number 20288-7) and Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (Grant Number 300007/2019-1).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Goyannes Gusmão Caiado.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cunha, V.H.C., Caiado, R.G.G., Corseuil, E.T. et al. Automated compliance checking in the context of Industry 4.0: from a systematic review to an empirical fuzzy multi-criteria approach. Soft Comput (2021). https://doi.org/10.1007/s00500-021-05599-3

Download citation

Keywords

  • Regulatory compliance checking
  • Systematic literature review
  • FAHP
  • TOPSIS
  • VIKOR
  • Industry 4.0