Skip to main content
Log in

Fuzzy topological structures via fuzzy graphs and their applications

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Fuzzy graphs are an individual of application tools in the area of mathematics, which permit the users to define the relative between concepts because the wildlife of fuzziness is satisfactory for any situation. They are helpful to give more exactness and suppleness to the classification as associated with the traditional models. A topological structure is a set model for graphs. The main purpose of this paper is to introduce a new kind of fuzzy topological structures in terms of fuzzy graphs called fuzzy topological graphs due to a class of fuzzy subsets, and some of their properties are investigated. Also, a new procedure to calculate the number of edges in fuzzy graphs will be defined. Further, we consider the concept of a homeomorphic between fuzzy topological graphs as a fuzzy topological property that can be used to prove the isomorphic between fuzzy graphs. Moreover, an algorithm based on the proposed operations that build some fuzzy topological graphs will be presented. Finally, we give a new method to explain the homeomorphic between some fuzzy topological graphs which will be applied in smart cities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abdul-Jabbar N, Naoom JH, Ouda EH (2009) Fuzzy dual graphs. J Al-Nahrain Univ 12(4):168–171

    Google Scholar 

  • Akram M (2019) \(m\)-Polar fuzzy graphs, studies in fuzziness and soft computing. Springer, Berlin

    Google Scholar 

  • Akram M, Naz S (2019) A novel decision-making approach under complex Pythagorean fuzzy environment. Math Comput Appl 24(3):73

    MathSciNet  Google Scholar 

  • Akram M, Luqman A (2020) Fuzzy hypergraphs and related extensions. In: Studies in fuzziness and soft computing. Springer, Berlin. https://doi.org/10.1007/978-981-15-2403-5

  • Akram M, Dar JM, Farooq A (2018a) Planar graphs under Pythagorean fuzzy environment. Mathematics 6(12):278

    Article  MATH  Google Scholar 

  • Akram M, Habib A, Ilyas F, Dar JM (2018b) Specific types of Pythagorean fuzzy graphs and application to decision-making. Math Comput Appl 23(3):42

    MathSciNet  Google Scholar 

  • Akram M, Bashir A, Samanta S (2020) Complex Pythagorean fuzzy planar graphs. Int J Appl Comput Math 6(58):1–27

    MathSciNet  MATH  Google Scholar 

  • Alshehri N, Akram M (2014) Intuitionistic fuzzy planar graphs. Discrete Dyn Nat Soc 2014:397–823

    Article  MathSciNet  MATH  Google Scholar 

  • Bhattacharya P (1987) Some remarks on fuzzy graphs. Pattern Recognit Lett 6:297–302

    Article  MATH  Google Scholar 

  • Bhutani KR (1989) On automorphism of fuzzy graphs. Pattern Recognit Lett 9:159–162

    Article  MATH  Google Scholar 

  • Bondy AJ, Murty RSU (1975) Graph theory with applications. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Chang CL (1968) Fuzzy topological spaces. J Math Anal Appl 24(1):182–190

    Article  MathSciNet  MATH  Google Scholar 

  • Coker D, Haydar Es A (1995) On fuzzy compactness in intuitionistic fuzzy topological spaces. J Fuzzy Math 3:899–910

    MathSciNet  MATH  Google Scholar 

  • Coker D (1997) An introduction to intuitionistic fuzzy topological spaces. Fuzzy Sets Syst 88(1):81–89

    Article  MathSciNet  MATH  Google Scholar 

  • De Santis A, Fasano A, Mignolli N, Villa A (2014) Smart city: fact and fiction. SSRN: https://ssrn.com/abstract=2410739

  • El Atik A, Nasef A (2020) Some topological structures of fractals and their related graphs. Filomat 34(1):153–165

    Article  MathSciNet  Google Scholar 

  • El Atik A, Nawar AS, Atef M (2020) Rough approximation models via graphs based on neighborhood systems. Granul Comput. https://doi.org/10.1007/s41066-020-00245-z

    Article  Google Scholar 

  • El-Naschie SM (2006) Topics in the mathematical physics of E-infinity theory. Chaos Solitons Fractals 30:656–663

    Article  MathSciNet  Google Scholar 

  • Ghorai G, Pal M (2016) Some properties of \(m\)-polar fuzzy graphs. Pac Sci Rev A Nat Sci Eng 18:38–46

    MATH  Google Scholar 

  • Jararweh Y, Otoum S, Al Ridhawi I (2020) Trustworthy and sustainable smart city services at the edge. Sustain Cities Soc 62:102394

    Article  Google Scholar 

  • Jiang H, Zhan J, Chen D (2018) Covering based variable precision \(({\cal{I}}, {\cal{T}})\)-fuzzy rough sets with applications to multi-attribute decision-making. IEEE Trans Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2018.2883023

    Article  Google Scholar 

  • Harary F (1972) Graph theory, 3rd edn. Addision-Wesely, Reading

    MATH  Google Scholar 

  • Hofer C, Kwitt R, Niethammer M, Uhl A (2017) Deep learning with topological signatures. Adv Neural Inf Process Syst 30:1634–1644

    Google Scholar 

  • Kaufmann A (1973) Introduction a la Theorie des Sour-Ensembles Flous. Masson et Cie, Paris

    MATH  Google Scholar 

  • Kozae AM, El Atik AA, Elrokh A, Atef M (2019) New types of graphs induced by topological spaces. J Intell Fuzzy Syst 36:5125–5134

    Article  Google Scholar 

  • Kramosil I, Michlek J (1975) Fuzzy metrics and statistical metric spaces. Kybernetika 11(5):336–344

    MathSciNet  MATH  Google Scholar 

  • Kumar H, Kumar MS, Gupta MP, Madaan J (2020) Moving towards smart cities: solutions that lead to the smart city transformation framework. Technol Forecast Soc Change 153:119281

    Article  Google Scholar 

  • Quijano-Sanchez L, Cantador I, Cortes-Cediel ME, Gil O (2020) Recommender systems for smart cities. Inf Syst 92:101545

    Article  Google Scholar 

  • Li G, Yan L, Ma Z (2019) An approach for approximate subgraph matching in fuzzy RDF graph. Fuzzy Sets Syst 376:106–126

    Article  MathSciNet  MATH  Google Scholar 

  • Liu YM, Luo MK (1998) Fuzzy topology. World Scientific, Singapore

    Google Scholar 

  • Lowen R (1976) Fuzzy topological spaces and fuzzy compactness. J Math Anal Appl 56(3):621–633

    Article  MathSciNet  MATH  Google Scholar 

  • Lowen R (1977) Initial and final fuzzy topologies and the fuzzy Tychonoff theorem. J Math Anal Appl 58(1):11–21

    Article  MathSciNet  MATH  Google Scholar 

  • Lum PY, Singh G, Lehman A, Ishkanov T, Vejdemo-Johansson M, Alagappan M, Carlsson J, Carlsson G (2013) Extracting insights from the shape of complex data using topology. Sci Rep 3:1236

    Article  Google Scholar 

  • Luqman A, Akram M, Smarandache F (2019) Complex neutrosophic hypergraphs: new social network models. Algorithms 12(11):234

    Article  Google Scholar 

  • Mathew S, Mordeson JN (2017) Connectivity concepts in fuzzy incidence graphs. Inf Sci 2017:326–333

    Article  MathSciNet  MATH  Google Scholar 

  • Ma J, Atef M, Nada S, Nawar A (2020) Certain types of covering-based multigranulation (I;T )-fuzzy rough sets with application to decision-making. Complexity 2020:1–20. https://doi.org/10.1155/2020/6661782

    Article  MATH  Google Scholar 

  • Mordeson JN (1993) Fuzzy line graphs. Pattern Recognit Lett 14:381–384

    Article  MATH  Google Scholar 

  • Mordeson JN, Nair PS (2000) Fuzzy graphs and hypergraphs. Physica Verlag, Heidelberg

    Book  MATH  Google Scholar 

  • Mordeson JN, Mathew S (2019) Advanced topics in fuzzy graph theory. Springer Nature, Cham

    Book  MATH  Google Scholar 

  • Nagoor Gani A, Malarvizhi J (2008) Isomorphism on fuzzy graphs, world academy of science. Eng Technol 47:505–511

    Google Scholar 

  • Naz S, Ashraf S, Akram M (2018) A novel approach to decision-making with Pythagorean fuzzy information. Mathematics 6(6):95

    Article  MATH  Google Scholar 

  • Nicolau M, Levine AJ, Carlsson G (2011) Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival. Proc Natl Acad Sci 108:72657270

    Article  Google Scholar 

  • Riaz M, Hashmi MR (2017) Fuzzy parameterized fuzzy soft topology with applications. Ann Fuzzy Math Inf 13(5):593–613

    Article  MathSciNet  MATH  Google Scholar 

  • Riaz M, Hashmi MR (2018) Fuzzy parameterized fuzzy soft compact spaces with decision-making. Punjab UJ Math 50(2):131–145

    MathSciNet  Google Scholar 

  • Rosenfeld A (1971) Fuzzy groups. J Math Anal Appl 35:512–517

    Article  MathSciNet  MATH  Google Scholar 

  • Rosenfeld A (1975) Fuzzy graphs. Academic Press, New York, pp 77–95

    MATH  Google Scholar 

  • Samanta S, Pal M (2011a) Fuzzy tolerance graphs. Int J Latest Trends Math 1(2):57–67

    Google Scholar 

  • Samanta S, Pal M (2011b) Fuzzy threshold graphs. CIIT Int J Fuzzy Syst 3(12):360–364

    Google Scholar 

  • Samanta S, Pal M (2013) Fuzzy k-competition graphs and p-competitions fuzzy graphs. Fuzzy Inf Eng 5(2):191–204

    Article  MathSciNet  MATH  Google Scholar 

  • Samanta S, Pal M (2015) Fuzzy planar graphs. IEEE Trans Fuzzy Sets Syst. https://doi.org/10.1109/TFUZZ.2014.2387875

    Article  MATH  Google Scholar 

  • Samanta S, Akram M, Pal M (2015) \(m\)-step fuzzy competition graphs. J Appl Math Comput 47(1):461–472

    Article  MathSciNet  MATH  Google Scholar 

  • Sardiu ME, Gilmore JM, Groppe B, Florens L, Washburn MP (2017) Identification of topological network modules in perturbed protein interaction networks. Sci Rep 7:43845

    Article  Google Scholar 

  • Sunitha MS, Vijayakumar A (2002) Complement of fuzzy graphs. Indian J Pure Appl Math 33:1451–1464

    MathSciNet  MATH  Google Scholar 

  • Thirunavukarasu P, Suresh R, Viswanathan KK (2016) Energy of a complex fuzzy graph. Int J Math Sci Eng Appl 10:243–248

    Google Scholar 

  • Vandercruysse L, Buts C, Dooms M (2020) A typology of smart city services: the case of data protection impact assessment. Cities 104:102731

    Article  Google Scholar 

  • Wang M, Zhou T, Wang D (2020) Tracking the evolution processes of smart cities in China by assessing performance and efficiency. Technol Soc 63:101353

    Article  Google Scholar 

  • Westraadt L, Calitz A (2020) A modelling framework for integrated smart city planning and management. Sustain Cities Soc 63:102444

    Article  Google Scholar 

  • Yaqoob N, Gulistan M, Kadry S, Wahab H (2019) Complex intuitionistic fuzzy graphs with application in cellular network provider companies. Mathematics 7(1):35

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MATH  Google Scholar 

  • Zhan J, Sun B, Alcantud JCR (2019) Covering based multigranulation \(({mathcal I}, {mathcal T})\) -fuzzy rough set models and applications in multi-attribute group decision-making. Inf Sci 476:290–318

    Article  MATH  Google Scholar 

  • Zhang K, Zhan J, Wu W, Alcantud JCR (2019a) Fuzzy \(\beta \)-covering based \(({mathcal{I}}, {mathcal{T}})\)-fuzzy rough set models and applications to multi-attribute decision-making. Comput Ind Eng 128:605–621

    Article  Google Scholar 

  • Zhang L, Zhan J, Xu Z (2019b) Covering-based generalized IF rough sets with applications to multi-attribute decision-making. Inf Sci 478:275–302

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the editor and referees for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Atef.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proofs

Appendix: Proofs

In this section, we prove the results declared in previous sections.

Proof

(Continue proof Theorem 2) If \(\mathcal {C}_1\) and \(\mathcal {C}_2\) are two parallel classes, then there exists a bijective fuzzy function F from \(\mathcal {C}_1\) to \(\mathcal {C}_2\), i.e., \({F}:\mathcal {C}_1 \rightarrow \mathcal {C}_2\), such that \({F}(\mathcal {C}_1)=\) \(\mathcal {C}_2\), where \(\mathcal {C}_1=\) \(\{\mathcal {A}_i: i \in I\}\) and \(\mathcal {C}_2=\) \(\{{F}(\mathcal {A}_i): i \in I\}\). Then, every vertex \(v_{\mathcal {A}_i}\) in \(\mathcal {G}_1\), the graph generated by \(\mathcal {C}_1\), we have a corresponding vertex \(v_{{F}(\mathcal {A}_i)}\) in \(\mathcal {G}_2\), the fuzzy graph generated by \(C_2\). So \(\mu _{R}(v_{\mathcal {A}_i},\) \(v_{\mathcal {A}_j})=\) \(\mu _{R}(\mathcal {A}_i \cap \mathcal {A}_j)=\) \(\mu _{R}({F}(\mathcal {A}_i \cap \mathcal {A}_j))\) \(=\mu _{R}({F}(\mathcal {A}_i)\) \(\cap {F}(\mathcal {A}_j))\) \(=\mu _{R}(v_{{F}(\mathcal {A}_i)},\) \(v_{{F}(\mathcal {A}_j)})\). Also, \(\sigma _{v_{\mathcal {A}_i}}=\) \(\sigma _{v_{{F}(\mathcal {A}_i)}}\) and \(\sigma _{v_{\mathcal {A}_j}}=\) \(\sigma _{v_{{F}(\mathcal {A}_j)}}\). Thus, F is an isomorphism. \(\square \)

Fig. 17
figure 17

Relationship between fuzzy sets

Proof

(Continue proof Theorem 3) The relation between fuzzy sets is shown in Fig. 17.

  1. (i)

    Let \(A \subseteq X\), \(|A| = m\) and \(|A^c| = n-m\)

    $$\begin{aligned} deg\left( V_A\right)= & {} \sum R\left( V_A,V_B\right) \\&+\sum R\left( V_A,V_E\right) \\&+\sum R\left( V_A,V_L\right) \\&+\sum R\left( V_A,V_K\right) \\= & {} \sum |A \cap B|+\sum |A \cap E|\\&+\sum |(A \cap L|+\sum |A \cap K|\\= & {} \sum |B|+\sum |A|+\sum |A \cap L|.\\ \sum |B|= & {} \sum _{i=1}^{m-1} i ^mC_i\\= & {} \sum _{i=1}^{m-1} i\frac{m!}{i!(m-i)!}\\= & {} m\sum _{i=1}^{m-1} \frac{m-1)!}{(i-1)!(m-i)!}\\= & {} m\sum _{i=1}^{m-1} {}^{m-1}C_{i-1}\\= & {} m\sum _{j=0}^{m-2} \left( {}^{m-1}C_j-1\right) \\= & {} m(2^{m-1}-1), \end{aligned}$$

    since \(B \subseteq A\), then\( \sum |A|\) = \(m(2^{m-1} - 1 )\). But \(A \subseteq E\), then by complement \(\sum |A|\)=\(m(2^{n-m} - 1)\) and \(\sum |A \cap L|\)=\((2^{n-m} - 1)\sum _{i=1}^{m-1} i\) \(^mC_i\) \(=m(2^{n-m} - 1 )(2^{m-1} -1 )\). So \(deg(V_A)\) = \(m(2^{n-1} - 1 ) + 2m\). It follows that the number of edges of pseudographs G equals

    $$\begin{aligned} |E_p(G)|= & {} \frac{1}{2}\sum _{m=1}^{n}{}^nC_mdeg(V_A)\\= & {} \frac{1}{2}\sum _{m=1}^{n}{}^nC_{m}\left( m\left( 2^{n-1} -1\right) +2m\right) \\= & {} \frac{1}{2}\sum _{m=1}^{n}{}^nC_{m} m\left( 2^{n-1} -1\right) \\&+\frac{1}{2} \sum _{m=1}^{n}{}^nC_m 2m\\= & {} n2^{n-2}\left( 2^{n-1}-1\right) \\&+\sum _{m=1}^{n}m{}^nC_m\\= & {} n2^{n-2}\left( 2^{n-1}-1\right) \\&+n\sum _{m=1}^{n}{}^{n-1}C_{m-1}\\= & {} n2^{n-2}\left( 2^{n-1}-1\right) \\&+n\sum _{j=0}^{n-1}{}^{n-1}C_j\\= & {} n2^{n-2}\left( 2^{n-1} -1\right) +n2^{n-1}. \end{aligned}$$
  2. (ii)

    \(deg(V_A)\) = \(m(2^{n-1} - 1 )\).

    It follows that the number of edges of discrete graphs equals

    $$\begin{aligned} |E_d(G)|= & {} \frac{1}{2} \sum _A deg(V_A)\\= & {} \frac{1}{2} \sum _A {}^nC_m m.\left( 2^{n-1}-1\right) \\= & {} \frac{1}{2}\left( 2^{n-1} -1\right) \sum _{m=1}^{n}m {}^nC_m\\= & {} \frac{1}{2}\left( 2^{n-1} -1\right) \sum _{m=1}^{n}m {}^nC_m\\= & {} \frac{1}{2}\left( 2^{n-1}-1 \right) \sum _{m=1}^{n} m\frac{n!}{m!(n-m)!}\\= & {} \frac{n}{2}\left( 2^{n-1}-1\right) \sum _{m=1}^{n} \frac{(n-1)!}{(m-1)!(n-m)!)}\\= & {} \frac{n}{2} \left( 2^{n-1}-1\right) \sum _{m=1}^{n} {}^{n-1}C_{m-1}\\= & {} \frac{n}{2}\left( 2^{n-1}-1\right) \sum _{j=0}^{n-1} {}^{n-1}C_j\\= & {} \frac{n}{2} \left( 2^{n-1}-1\right) 2^{n-1}\\= & {} n2^{n-2}\left( 2^{n-1}-1\right) . \end{aligned}$$
  3. (iii)

    \(deg (V_A) = 2^n - 2^{n-m}- 1\).

    It follows that the number of edges of simple graphs G equals

    $$\begin{aligned} |E_s(G)|= & {} \frac{n}{2} \sum _{m=1}^{n} {}^nC_m deg \left( V_A\right) \\= & {} \frac{1}{2}\sum _{m=1}^{n} {}^nC_m \left( 2^n-2^{n-m}-1\right) \\= & {} \frac{1}{2}\left( 2^n-1\right) \sum _{m=1}^{n} {}^nC_m\\&-\frac{1}{2}2^n \sum _{m=1}^{n} {}^nC_m 2^{-m}\\= & {} \frac{1}{2}\left( 2^n-1\right) \left( 2^{n-1}-1\right) \\&- 2^{n-1}\sum _{m=1}^{n}\left( \frac{1}{2}\right) ^m {}^nC_m\\= & {} \frac{1}{2}\left( 2^{2n}-2^{n+1}+1\right) \\&-2^{n-1}\left( \left( 1+\frac{1}{2}\right) ^n-1\right) \\= & {} \frac{1}{2}\left( \left( 2^{2n}-2.2^n +1\right) -\left( 3^n-2^n\right) \right) \\= & {} \frac{1}{2}(2^{2n}-2^n-3^n+1). \end{aligned}$$

The total degree of edges of fuzzy topological graphs can be calculated for the three different types of fuzzy graphs as follows:

[For fuzzy pseudographs:] Let \(\mathcal {B} \le \mathcal {A} \le \mathcal {E} \le X\), \(|\mathcal {A}| = m\) and \(|\mathcal {A}^c|= n-m\)

$$\begin{aligned} deg\left( V_{\mathcal {A}}\right)= & {} \sum \mu _{R}\left( V_{\mathcal {A}},V_{\mathcal {B}}\right) \\&+ 2\sum \mu _{R}\left( V_{\mathcal {A}},V_{\mathcal {A}}\right) \\&+\sum \mu _{R}\left( V_{\mathcal {A}},V_{\mathcal {E}}\right) \\&+\sum \mu _{R}\left( V_{\mathcal {A}},V_{\mathcal {L}}\right) \\&+\sum \mu _{R}\left( V_{\mathcal {A}},V_{\mathcal {K}}\right) \\= & {} \sum \mu _{R}\left( V_{\mathcal {A}} \cap V_{\mathcal {B}}\right) \\&+ 2\sum \mu _{R}\left( V_{\mathcal {A}} \cap V_{\mathcal {A}}\right) \\&+\sum \mu _{R}\left( V_{\mathcal {A}}\cap V_{\mathcal {E}}\right) \\&+\mu _{R}\left( V_{\mathcal {A}}\cap V_{\mathcal {L}}\right) \\&+\sum \mu _{R}\left( V_{\mathcal {A}} \cap V_{\mathcal {K}}\right) \\= & {} \sum \mu _{R}\left( V_{\mathcal {B}}\right) \\&+ 2\sum \mu _{R}\left( V_{\mathcal {A}}\right) \\&+\sum \mu _{R}\left( V_{\mathcal {A}}\right) \\&+\sum \mu _{R}\left( V_{\mathcal {A}}\cap V_{\mathcal {L}}\right) \\= & {} \sum \limits _{i=1}^{|B|}\mu _{R}\left( V_{\mathcal {B}}\right) \\&+ 2\sum \limits _{i=1}^{|A|}\mu _{R}\left( V_{\mathcal {A}}\right) \\&+\sum \limits _{i=1}^{|A \cap E|}\mu _{R}\left( V_{\mathcal {A}}\right) \\&+\sum \limits _{i=1}^{|A \cap L|}\mu _{R}\left( V_{\mathcal {A\cap L}}\right) . \end{aligned}$$

\(\forall x\in \mathcal {B}, y \in \mathcal {A}, w \in \mathcal {E}\) and \(z \in \mathcal {L}\) we have,

$$\begin{aligned} deg\left( V_{\mathcal {A}}\right)= & {} \sum \limits _{i=1}^{|B|}\mu _{R}(xy)+ 2\sum \limits _{i=1}^{|A|}\mu _{R}(yy)\\&+\sum \limits _{i=1}^{|A \cap E|}\mu _{R}(yw)+\sum \limits _{i=1}^{|A \cap L|}\mu _{R}(yz). \end{aligned}$$

It follows that the total degree of edges of fuzzy pseudographs \(\mathcal {G}\) equals

$$\begin{aligned} \sum \mathcal {E}_p(\mathcal {G})= \sum \limits _{i=1}^{|V(\mathcal {G})|}deg{(V_i)}. \end{aligned}$$

[For fuzzy discrete graphs:]

$$\begin{aligned} deg\left( V_{\mathcal {A}}\right)= & {} \sum \mu _{R}\left( V_{\mathcal {A}},V_{\mathcal {B}}\right) \\&+\sum \mu _{R}\left( V_{\mathcal {A}},V_{\mathcal {E}}\right) \\&+\sum \mu _{R}\left( V_{\mathcal {A}},V_{\mathcal {L}}\right) \\&+\sum \mu _{R}\left( V_{\mathcal {A}},V_{\mathcal {K}}\right) \\= & {} \sum \mu _{R}\left( V_{\mathcal {A}} \cap V_{\mathcal {B}}\right) \\&+ \sum \mu _{R}\left( V_{\mathcal {A}}\cap V_{\mathcal {E}}\right) \\&+\mu _{R}\left( V_{\mathcal {A}}\cap V_{\mathcal {L}}\right) \\&+\sum \mu _{R}\left( V_{\mathcal {A}} \cap V_{\mathcal {K}}\right) \\= & {} \sum \mu _{R}\left( V_{\mathcal {B}}\right) \\&+ \sum \mu _{R}\left( V_{\mathcal {A}}\right) \\&+\sum \mu _{R}\left( V_{\mathcal {A}}\cap V_{\mathcal {L}}\right) \\= & {} \sum \limits _{i=1}^{|B|}\mu _{R}\left( V_{\mathcal {B}}\right) \\&+\sum \limits _{i=1}^{|A \cap E|}\mu _{R}\left( V_{\mathcal {A}}\right) \\&+\sum \limits _{i=1}^{|A \cap L|}\mu _{R}\left( V_{\mathcal {A\cap L}}\right) . \end{aligned}$$

\(\forall x\in \mathcal {B}, y \in \mathcal {A}, w \in \mathcal {E}\) and \(z \in \mathcal {L}\) we have,

$$\begin{aligned} deg\left( V_{\mathcal {A}}\right)= & {} \sum \limits _{i=1}^{|B|}\mu _{R}(xy)+ \sum \limits _{i=1}^{|A \cap E|}\mu _{R}(yw)\\&+\sum \limits _{i=1}^{|A \cap L|}\mu _{R}(yz) \end{aligned}$$

It follows that the summation of edges of fuzzy discrete graphs \(\mathcal {G}\) equals

$$\begin{aligned} \sum \mathcal {E}_d\left( \mathcal {G}\right) =\sum \limits _{i=1}^{|V(\mathcal {G})|}deg{\left( V_i\right) } \end{aligned}$$

[For fuzzy simple graphs:] Let the number of the fuzzy subset of length \(|B|=k\), \(|A\cap E|=l\), and \(|A \cap L|=r\). Then, we have

$$\begin{aligned} deg\left( V_{\mathcal {A}}\right)= & {} \sum \mu _{R}\left( V_{\mathcal {A}},V_{\mathcal {B}}\right) +\sum \mu _{R}\left( V_{\mathcal {A}},V_{\mathcal {E}}\right) \\&+\sum \mu _{R}\left( V_{\mathcal {A}},V_{\mathcal {L}}\right) +\sum \mu _{R}\left( V_{\mathcal {A}},V_{\mathcal {K}}\right) \\= & {} \sum \mu _{R}\left( V_{\mathcal {A}} \cap V_{\mathcal {B}}\right) + \sum \mu _{R}\left( V_{\mathcal {A}}\cap V_{\mathcal {E}}\right) \\&+\mu _{R}(V_{\mathcal {A}}\cap V_{\mathcal {L}}) +\sum \mu _{R}\left( V_{\mathcal {A}} \cap V_{\mathcal {K}}\right) \\= & {} \sum \mu _{R}\left( V_{\mathcal {B}}\right) + \sum \mu _{R}\left( V_{\mathcal {A}}\right) \\&+\sum \mu _{R}\left( V_{\mathcal {A}}\cap V_{\mathcal {L}}\right) \\= & {} \sum \limits _{i=1}^{k}\mu _{R}\left( V_{\mathcal {B}}\right) +\sum \limits _{i=1}^{l}\mu _{R}\left( V_{\mathcal {A}}\right) \\&+\sum \limits _{i=1}^{r}\mu _{R}\left( V_{\mathcal {A\cap L}}\right) . \end{aligned}$$

\(\square \)

Proof

(Continue proof Theorem 4) Let \(\mathcal {G}\) be a fuzzy graph. To complete the proof, it is sufficient to prove three conditions of a fuzzy topology on \(\tau \).

  1. (i)

    By Definitions 3 and 7, \(\mathcal {G}\) can be represented by different classes. Suppose that the graph number of \(\mathcal {G}\) is m. Then, there exists a class, say \(\tau \), such that \(\tau \le P(\bigg \{\displaystyle \frac{a}{x_1},\) \(\frac{b}{x_2},\) \(\frac{c}{x_3}, \ldots , \frac{d}{x_m}\bigg \})\) and represents \(\mathcal {G}\). Each \(\mathcal {A}_i \in {\tau }\) represents \(v_i\) and \(X \in {\tau }\) represents the set of vertices \(V(\mathcal {G})\). So, by Definition 6, \(\mu _{R}(v_i,V(\mathcal {G}))=\) \(\mu _{R}(v_i,X)\). If \(N= \bigg \{\displaystyle \frac{a}{x_1},\) \(\frac{b}{x_2},\) \(\frac{c}{x_3}, \ldots , \frac{d}{x_m}\bigg \}\), then \(\mu _{R}(\mathcal {A} \cap X)=\) \(\mu _{R}(\mathcal {A}\cap {\mathbb {N}})=\) \(\mu _{R}(\mathcal {A})\). This means that each \(\mathcal {A} \in {\tau }\) satisfies that \(\mathcal {A} \le X\). Since every vertex in \(\mathcal {G}\) is a fuzzy graph subset of \(V(\mathcal {G})\), i.e., for every \(v_i \in V(\mathcal {G})\) the singleton \(\{v_i\} \subset V(\mathcal {G})\) and each element in \({\tau }\) is a fuzzy subset from \(X \in {\tau }\), then \(X= \bigg \{\displaystyle \frac{a}{x_1}, \frac{b}{x_2},\frac{c}{x_3}, \ldots , \frac{d}{x_m}\bigg \}\). Also, the isolated vertex \(v_0\) can be represented by \(0 \in {\tau }\).

  2. (ii)

    Let \(v_1, v_2, \ldots \) be an arbitrary different vertices in \(V(\mathcal {G})\) represented by \(\mathcal {A}_{v_1} ,\mathcal {A}_{v_2}, \ldots \). Since \(v_1 \vee v_2 \vee \cdots = v_{({\mathcal {A}_{v_1} \vee \mathcal {A}_{v_2} \vee \cdots })}\), then \(\mathcal {A}_{v_1} \vee \mathcal {A}_{v_2} \vee \cdots \in {\tau }\).

  3. (iii)

    If \(v_i\) and \(v_j\) are two different vertices in \(V(\mathcal {G})\) and represented by \(\mathcal {A}_i\) and \(\mathcal {A}_j\), respectively. Since \(v_i \wedge v_j=\) \(v_{{\mathcal {A}_i} \wedge {\mathcal {A}_j}}\), then \(\mathcal {A}_i \wedge \mathcal {A}_j \in {\tau }\). Therefore, \({\tau }\) is a fuzzy topology. \(\square \)

Proof

(Continue proof Theorem 5) Let \(\mathcal {A}_m=\) \(\{\frac{a}{x_1},\) \(\frac{b}{x_2},\ldots ,\frac{c}{x_m}\}\), \(1\le k\le m \), \(k< m < n\) and \(B_k\subseteq A_m \subseteq C_n\)

$$\begin{aligned} deg V_{\mathcal {A}_m}= & {} \sum \mu _{R}\left( B_k,A_m\right) + \sum \mu _{R}\left( A_m,C_n\right) \\= & {} \sum \mu _{R}\left( B_k\cap A_m\right) +\sum \mu _{R}\left( A_m\cap C_n\right) \\= & {} \sum \limits _{i=1}^{|B_k \cap A_m|} \mu _{R}\left( B_k\right) +\sum \limits _{i=1}^{|A_m \cap C_n|} \mu _{R}\left( A_m,C_n\right) \\= & {} \sum \limits _{i=1}^{|B_k \cap A_m|} \mu _{R}(xy) +\sum \limits _{i=1}^{|A_m \cap C_n|} \mu _{R}(yz). \end{aligned}$$

\(\forall x \in B_k, y \in A_m\) and \(z \in C_n\). The total degree of edges is \(\sum E(\mathcal {G})= \frac{1}{2}\sum \limits _{i=1}^n deg V_{\mathcal {A}_i}\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atef, M., El Atik, A.E.F. & Nawar, A. Fuzzy topological structures via fuzzy graphs and their applications. Soft Comput 25, 6013–6027 (2021). https://doi.org/10.1007/s00500-021-05594-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-021-05594-8

Keywords

Navigation