Gaussian-kernel c-means clustering algorithms

Abstract

Partitional clustering is the most used in cluster analysis. In partitional clustering, hard c-means (HCM) (or called k-means) and fuzzy c-means (FCM) are the most known clustering algorithms. However, these HCM and FCM algorithms work worse for data sets in a noisy environment and get inaccuracy when the data set has different shape clusters. For solving these drawbacks in HCM and FCM, Wu and Yang (Pattern Recognit 35:2267–2278, 2002) proposed the alternative c-means clustering with an exponential-type distance that extends HCM and FCM into alternative HCM (AHCM) and alternative FCM (AFCM). In this paper, we construct a more generalization of AHCM and AFCM with Gaussian-kernel c-means clustering, called GK-HCM and GK-FCM. For theoretical behaviors of GK-FCM, we analyze the bordered Hessian matrix and then give the theoretical properties of the GK-FCM algorithm. Some numerical and real data sets are used to compare the proposed GK-HCM and GK-FCM with AHCM and AFCM methods. Experimental results and comparisons actually demonstrate these good aspects of the proposed GK-HCM and GK-FCM algorithms with its effectiveness and usefulness. Finally, we apply the GK-FCM algorithm to MRI segmentation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, Levine AJ (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci 96(12):6745–6750

    Article  Google Scholar 

  2. Antal B, Hajdu A (2014) An ensemble-based system for automatic screening of diabetic retinopathy. Knowl Based Syst 60:20–27

    Article  Google Scholar 

  3. Bandyopadhyay S (2004) An automatic shape independent clustering technique. Pattern Recognit 37:33–45

    Article  Google Scholar 

  4. Baraldi A, Blonda P (1999) A survey of fuzzy clustering algorithms for pattern recognition part I and II. IEEE Trans Syst Man Cybern B Cybern 29:778–801

    Article  Google Scholar 

  5. Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Plenum, New York

    Google Scholar 

  6. Bhatt R (2005) Fuzzy-rough approaches for pattern classification: hybrid measures, mathematical analysis, feature selection algorithms, decision tree algorithms, neural learning, and applications. Amazon Books, Boston

    Google Scholar 

  7. Chang ST, Lu KP, Yang MS (2015) Fuzzy change-point algorithms for regression models. IEEE Trans Fuzzy Syst 23:2343–2357

    Article  Google Scholar 

  8. Chen SC, Zhang DQ (2004) Robust image segmentation using FCM with spatial constrains based on new kernel-induced distance measure. IEEE Trans Syst Man Cybern B 34:1907–1916

    Article  Google Scholar 

  9. Coombs CH, Dawes RM, Tversky A (1970) Mathematical psychology: an elementary introduction. Englewood Cliffs, Prentice-Hall

    Google Scholar 

  10. Dave RN (1991) Characterization and detection of noise in clustering. Pattern Recognit Lett 12:657–664

    Article  Google Scholar 

  11. Dembélé D, Kastner P (2003) Fuzzy c-means method for clustering microarray data. Bioinformatics 19:973–980

    Article  Google Scholar 

  12. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B 39:1–38. (With discussion)

    MathSciNet  MATH  Google Scholar 

  13. Dua D, Taniskidou EK (2017) UCI machine learning repository. School of Information and Computer Science, University of California, Irvine. http://archive.ics.uci.edu/ml

  14. Dunn JC (1974) A fuzzy relative of the ISODATA process and its use in detecting compact, well-separated clusters. J Cybern 3:32–57

    MathSciNet  Article  Google Scholar 

  15. Gustafson DE, Kessel WC (1979) Fuzzy clustering with a fuzzy covariance matrix. In: Proceedings of IEEE CDC, California, pp 761–766

  16. Gyamfi KS, Brusey J, Hunt A, Gaura E (2018) Linear dimensionality reduction for classification via a sequential Bayes error minimisation with an application to flow meter diagnostics. Expert Syst Appl 91:252–262

    Article  Google Scholar 

  17. Hathaway RJ, Bezdek JC, Hu Y (2000) Generalized fuzzy c-means clustering strategies using Lp norm distances. IEEE Trans Fuzzy Syst 8:576–582

    Article  Google Scholar 

  18. Izakian H, Pedrycz W, Jamal I (2013) Clustering spatiotemporal data: an augmented fuzzy c-means. IEEE Trans Fuzzy Syst 21:855–868

    Article  Google Scholar 

  19. Jain AK (2010) Data clustering: 50 years beyond k-means. Pattern Recognit Lett 31:651–666

    Article  Google Scholar 

  20. Kaufman L, Rousseeuw PJ (1990) Finding groups in data: an introduction to cluster analysis. Wiley, New York

    Google Scholar 

  21. Krishnapuram R, Keller JM (1993) A possibilistic approach to clustering. IEEE Trans Fuzzy Syst 1:98–110

    Article  Google Scholar 

  22. Lubischew AA (1962) On the use of discriminant functions in taxonomy. Biometrics 18:455–477

    Article  Google Scholar 

  23. MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley symposium, vol 1, pp 281–297

  24. McLachlan GJ, Basford KE (1988) Mixture models: inference and applications to clustering. Marcel Dekker, New York

    Google Scholar 

  25. Pollard D (1982) Quantization and the method of k-means. IEEE Trans Inf Theory 28:199–205

    MathSciNet  Article  Google Scholar 

  26. Rand WM (1971) Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66:846–850

    Article  Google Scholar 

  27. Rohra JG, Perumal B, Narayanan SJ, Thakur P, Bhatt RB (2017) User localization in an indoor environment using fuzzy hybrid of particle swarm optimization and gravitational search algorithm with neural networks. In: Proceedings of sixth international conference on soft computing for problem solving, Singapore, pp 286–295

  28. Ruspini E (1969) A new approach to clustering. Inf Control 15:22–32

    Article  Google Scholar 

  29. Wei C, Fahn C (2002) The multisynapse neural network and its application to fuzzy clustering. IEEE Trans Neural Netw 13:600–618

    Article  Google Scholar 

  30. Werner F, Sotskov YN (2006) Mathematics of economics and business. Routledge, Taylor & Francis Group, London and New York

    Google Scholar 

  31. Wu KL, Yang MS (2002) Alternative c-means clustering algorithms. Pattern Recognit 35:2267–2278

    Article  Google Scholar 

  32. Wu KL, Yang MS (2007) Mean shift-based clustering. Pattern Recognit 40:3035–3052

    Article  Google Scholar 

  33. Yager RR, Filev DP (1994) Approximate clustering via the mountain method. IEEE Trans Syst Man Cybern 24:1279–1284

    Article  Google Scholar 

  34. Yang MS, Nataliani Y (2018) A feature-reduction fuzzy clustering algorithm with feature-weighted entropy. IEEE Trans Fuzzy Syst 26:817–835

    Article  Google Scholar 

  35. Yang MS, Wu KL (2004) A similarity-based robust clustering method. IEEE Trans Pattern Anal Mach Intell 26:434–448

    Article  Google Scholar 

  36. Yang MS, Wu KL (2005) A modified mountain clustering algorithm. Pattern Anal Appl 8:125–138

    MathSciNet  Article  Google Scholar 

  37. Yang MS, Hu YJ, Lin KCR, Lin CCL (2002) Segmentation techniques for tissue differentiation in MRI of ophthalmology using fuzzy clustering algorithms. Magn Reson Imaging 20:173–179

    Article  Google Scholar 

  38. Yang MS, Hung WL, Cheng FJ (2006) Mixed-variable fuzzy clustering approach to part family and machine cell formation for GT applications. Int J Prod Econ 103:185–198

    Article  Google Scholar 

  39. Yang MS, Lai CY, Lin CY (2012) A robust EM clustering algorithm for Gaussian mixture models. Pattern Recognit 45:3950–3961

    Article  Google Scholar 

  40. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their helpful comments in improving the presentation of this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Miin-Shen Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Carlos Martín-Vide and Miguel A. Vega-Rodríguez.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chang-Chien, SJ., Nataliani, Y. & Yang, MS. Gaussian-kernel c-means clustering algorithms. Soft Comput 25, 1699–1716 (2021). https://doi.org/10.1007/s00500-020-04924-6

Download citation

Keywords

  • Clustering
  • Hard c-means (HCM)
  • Fuzzy c-means (FCM)
  • Gaussian-kernel HCM (GK-HCM)
  • Gaussian-kernel FCM (GK-FCM)
  • MRI segmentation