An information set-based robust text-independent speaker authentication

Abstract

This paper presents a method for the extraction of twofold information set (TFIS) features for the text-independent speaker recognition. The method takes the Mel frequency cepstral coefficients from the frames of a sample speech signal and forms a matrix. From this, both spatial and temporal information components are derived based on the information set concept using the entropy framework. The TFIS features comprising their combination of two components are less in number thus reducing the computational time, complexity and improving the performance under the noisy environment. The proposed approach is tested on three datasets namely NIST-2003, VoxForge 2014 speech corpus and VCTK speech corpus in terms of speed, computational complexity, memory requirement and accuracy. Its performance is validated under different noisy environments at different signal-to-noise ratios.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Aggarwal M, Hanmandlu M (2015) Representing uncertainty with information sets. IEEE Trans Fuzzy Syst 24(1):1–15

    Article  Google Scholar 

  2. Chang C-C, Lin C-J (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):1–27

    Article  Google Scholar 

  3. Davis S, Mermelstein P (1980) Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE Trans Acoust Speech Signal Process 28(4):357–366

    Article  Google Scholar 

  4. Ephraim Y, Malah D (1984) Speech enhancement using a minimum-mean square error short-time spectral amplitude estimator. IEEE Trans Acoust Speech Signal Process 32(6):1109–1121

    Article  Google Scholar 

  5. Furui S (1981) Cepstral analysis technique for automatic speaker verification. IEEE Trans Acoust Speech Signal Process 29(2):254–272

    Article  Google Scholar 

  6. Hanmandlu M, Das A (2011) Content-based image retrieval by information theoretic measure. Def Sci J 61(5):415–430

    Article  Google Scholar 

  7. Hermansky H, Morgan N (1994) RASTA processing of speech. IEEE Trans Speech Audio Process 2(4):578–589

    Article  Google Scholar 

  8. Jawarkar NP, Holambe RS, Basu TK (2011) Use of fuzzy min–max neural network for speaker identification. In: 2011 international conference on recent trends in information technology (ICRTIT)

  9. Jayanna HS, Prasanna SRM (2009) Multiple frame size and rate analysis for speaker recognition under limited data condition. IET Signal Proc 3(3):189–204

    Article  Google Scholar 

  10. Jeevan M, Madasu H, Panigrahi BK (2016) Information set based gait authentication system. Neurocomputing 207:1–14

    Article  Google Scholar 

  11. Kenny P, Boulianne G, Ouellet P, Dumouchel P (2007) Joint factor analysis versus eigenchannels in speaker recognition. IEEE Trans Audio Speech Lang Process 15(4):1435–1447

    Article  Google Scholar 

  12. Kinnunen T, Hautamäki V, Fränti P (2006) On the use of long-term average spectrum in automatic speaker recognition. In: 5th international symposium on chinese spoken language processing (ISCSLP’06). Singapore, pp 559–567

  13. Kumar K, Kim C, Stern RM (2011) Delta-spectral cepstral coefficients for robust speech recognition. In: IEEE international conference on acoustics, speech and signal processing (ICASSP)

  14. Lee KY (2004) Local fuzzy PCA based GMM with dimension reduction on speaker identification. Pattern Recogn Lett 25(16):1811–1817

    Article  Google Scholar 

  15. Longworth C, Gales MJF (2009) Combining derivative and parametric kernels for speaker verification. IEEE Trans Audio Speech Lang Process 17(4):748–757

    Article  Google Scholar 

  16. Madasu H (2011) Information sets and information processing. Def Sci J 61(5):405–407

    Article  Google Scholar 

  17. Mak MW, Pang X, Chien JT (2016) Mixture of PLDA for noise robust i-vector speaker verification. IEEE/ACM Trans Audio Speech Lang Process 24(1):130–142

    Article  Google Scholar 

  18. Mamta B, Madasu H (2014a) A new entropy function and a classifier for thermal face recognition. Eng Appl Artif Intell 36:269–286

    Article  Google Scholar 

  19. Mamta B, Madasu H (2014b) Robust authentication using the unconstrained infrared face images. Expert Syst Appl 41(14):6494–6511

    Article  Google Scholar 

  20. Mandasari MI, Mitchell ML, van Leeuwen DA (2011) Evaluation of i-vector speaker recognition systems for forensic application. In: INTERSPEECH

  21. Markel J, Oshika B, Gray A (1977) Long-term feature averaging for speaker recognition. IEEE Trans Acoust Speech Signal Process 25(4):330–337

    Article  Google Scholar 

  22. [Online] (2003) The NIST year 2003 speaker recognition evaluation plan. http://www.itl.nist.gov/iad/mig/tests/sre/2003/2003-spkrec-evalplan-v2.2.pdf

  23. [Online] (2009) The Centre for Speech Technology Research VCTK Corpus

  24. [Online] (2015) VoxForge speech corpus. http://www.repository.voxforge1.org/downloads/SpeechCorpus/Trunk/Audio/Main/

  25. Pelecanos J, Sridharan S (2001) Feature warping for robust speaker verification. A speaker odyssey—the speaker recognition workshop. Crete, Greece, International Speech Communication Association (ISCA), pp 213–218

  26. Pinheiro HNB, Vieira SRF, Ren TI, Cavalcanti GDC, de Mattos NPSG (2016). Type-2 fuzzy GMM for text-independent speaker verification under unseen noise conditions. In: 2016 IEEE international conference on acoustics, speech and signal processing (ICASSP)

  27. Pujol P, Macho D, Nadeu C (2006). On real-time mean-and-variance normalization of speech recognition features. In: 2006 IEEE international conference on acoustics speech and signal processing proceedings

  28. Reynolds DA (1995) Speaker identification and verification using Gaussian mixture speaker models. Speech Commun 17(1–2):91–108

    Article  Google Scholar 

  29. Reynolds DA, Rose RC (1995) Robust text-independent speaker identification using Gaussian mixture speaker models. IEEE Trans Speech Audio Process 3(1):72–83

    Article  Google Scholar 

  30. Reynolds DA, Quatieri TF, Dunn RB (2000) Speaker verification using adapted Gaussian mixture models. Digit Signal Proc 10(1–3):19–41

    Article  Google Scholar 

  31. Lung S-Y (2004a) Adaptive fuzzy wavelet algorithm for text-independent speaker recognition. Pattern Recogn 37(10):2095–2096

    Article  Google Scholar 

  32. Lung S-Y (2004b) Further reduced form of wavelet feature for text independent speaker recognition. Pattern Recogn 37(7):1565–1566

    Article  Google Scholar 

  33. Sohn J, Kim NS, Sung W (1999) A statistical model-based voice activity detection. IEEE Signal Process Lett 6(1):1–3

    Article  Google Scholar 

  34. Togneri R, Pullella D (2011) An overview of speaker identification: accuracy and robustness issues. IEEE Trans Circuits Syst Mag 11(2):23–61

    Article  Google Scholar 

  35. Wan V, Renals S (2005) Speaker verification using sequence discriminant support vector machines. IEEE Trans Speech Audio Process 13(2):203–210

    Article  Google Scholar 

  36. Wang Y, Liu X, Xing Y, Li M (2008) A novel reduction method for text-independent speaker identification. In: 2008 fourth international conference on natural computation

  37. Zhao X, Wang DL (2013). Analyzing noise robustness of MFCC and GFCC features in speaker identification. In: IEEE international conference on acoustics, speech and signal processing (ICASSP)

  38. Mirhassani SM, Ting H-N (2014) Fuzzy-based discriminative feature representation for children’s speech recognition. Digital Signal Process 31:102–114

    Article  Google Scholar 

  39. Yuan ZX, Yu CZ, Fang Y (1993) Text independent speaker identification using fuzzy mathematical algorithm. In: IEEE international conference on acoustics, speech, and signal processing, ICASSP

  40. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  Google Scholar 

  41. Zhao X, Shao Y, Wang DL (2012) CASA-based robust speaker identification. IEEE Trans Audio Speech Lang Process 20(5):1608–1616

    Article  Google Scholar 

Download references

Acknowledgements

This is a part of the ongoing project on “Personal Authentication using Multimodal Behavioral Biometrics: Voice and Gait” and the authors express their gratitude to the Department of Science and Technology, Government of India (Grant No. SB/S3/EECE/0127/2013) for funding the project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jeevan Medikonda.

Ethics declarations

Conflict of interest

The authors’ declare that they have no conflict of interest.

Human and animals rights

This article does not contain any studies with direct human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by V. Loia.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Medikonda, J., Bhardwaj, S. & Madasu, H. An information set-based robust text-independent speaker authentication. Soft Comput 24, 5271–5287 (2020). https://doi.org/10.1007/s00500-019-04277-9

Download citation

Keywords

  • Text-independent speaker recognition
  • Information set theory
  • Twofold information set features