Skip to main content
Log in

A framework combining DNN and level-set method to segment brain tumor in multi-modalities MR image

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

The magnetic resonance (MR) brain tumor image segmentation can quantitatively analyze the tumor size and provide a large number of brain functional and anatomical information, which to a certain degree can guide the brain disease diagnosis and treatment planning. In this paper, we proposed a framework for brain tumor MR image segmentation combining deep learning and level-set method. First of all, we trained deep neural network (DNN) to classify center pixel of the image patches according to four MR modalities (T1, T1c, T2 and flair) and generated the segmentation result as initialization for level-set method. Secondly, we refine the segmentation results in edema region by level set in flair modality, which compensated for the discontinuity of the DNN segmentation improving the segmentation accuracy. In order to balance tumor patches proportion in datasets increasing them from 2 to 15%, we select patches randomly with a fixed proportion between tumor and normal tissue. Experiments show that the proposed method can effectively overcome discontinuity in segmentation result and obtain a satisfied segmentation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Zheng X (2015) TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXiv: Distributed, Parallel, and Cluster Computing

  • Ananthi VP, Balasubramaniam P (2016) A new thresholding technique based on fuzzy set as an application to leukocyte nucleus segmentation. Comput Methods Prog Biomed 134:165–177

    Article  Google Scholar 

  • Bengio Y, Courville AC, Vincent P (2013) Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell 35(8):1798–1828

    Article  Google Scholar 

  • Clarke LP, Velthuizen RP, Camacho MA, Heine JJ, Vaidyanathan M, Hall LO, Silbiger ML (1995) MRI segmentation: methods and applications. Magn Reson Imaging 13(3):343–368

    Article  Google Scholar 

  • Davy A, Havaei M, Warde-Farley D, Biard A, Tran L, Jodoin PM, Courville A, Larochelle H, Pal C, Bengio Y (2014) Brain tumor segmentation with deep neural networks. In: Proceedings of BRATS-MICCAI

  • Dvořák P, Menze B (2015) Local structure prediction with convolutional neural networks for multimodal brain tumor segmentation. Medical computer vision: algorithms for big data. Springer, Berlin

    Google Scholar 

  • Farahani K, Menze B, Reyes M (2013) Multimodal brain tumor segmentation (BRATS 2013). https://www.smir.ch/BRATS/Start2013. Accessed 2017

  • Ostrom QT, Gittleman H, Fulop J et al (2015) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro Oncol 17:iv1–iv6

    Article  Google Scholar 

  • Girshick RB, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. In: Computer vision and pattern recognition, pp 580–587

  • Glorot X, Bordes A, Bengio Y (2011) Domain adaptation for large-scale sentiment classification: a deep learning approach. In: International conference on machine learning

  • Goodfellow IJ, Wardefarley D, Mirza M, Courville AC, Bengio Y (2013) Maxout networks. In: International conference on machine learning

  • Havaei M, Davy A, Wardefarley D, Biard A, Courville AC, Bengio Y, Larochelle H (2017) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31

    Article  Google Scholar 

  • Jarrett K, Kavukcuoglu K, Ranzato M, Lecun Y (2009) What is the best multi-stage architecture for object recognition? In: International conference on computer vision

  • Jayadevappa D, Kumar SS, Murty DS (2011) Medical image segmentation algorithms using deformable models: a review. Iete Tech Rev 28(3):248–255

    Article  Google Scholar 

  • Jiang GP, Qin WJ, Zhou SJ, Wang CM (2015) State-of-the-art in medical image segmentation. Chin J Comput 38(6):1222–1242

  • Kingma DP, Ba J (2015) Adam: a method for stochastic optimization. In: International conference on learning representations

  • Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Neural information processing systems, pp 1097–1105

  • Lecun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  • Li Y, Jia F, Qin J (2016) Brain tumor segmentation from multimodal magnetic resonance images via sparse representation. Artif Intell Med 73:1–13

    Article  Google Scholar 

  • Liu S, Lu M, Liu G, Pan Z (2017) A novel distance metric: generalized relative entropy. Entropy 19(6):269

    Article  Google Scholar 

  • Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Computer vision and pattern recognition, pp 3431–3440

  • Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820

    Article  Google Scholar 

  • Mansourvar M, Ismail MA, Herawan T, Raj RG, Kareem SA, Nasaruddin FH (2013) Automated bone age assessment: motivation, taxonomies, and challenges. Comput Math Methods Med 2013:391626–391626

    Article  Google Scholar 

  • Masood S, Sharif M, Masood A, Yasmin M, Raza M (2015) A survey on medical image segmentation. Curr Med Imaging Rev 11(1):3–14

    Article  Google Scholar 

  • Menze BH, Jakab A, Bauer S, Kalpathycramer J, Farahani K, Kirby JS, Van Leemput K (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34(10):1993–2024

    Article  Google Scholar 

  • Moeskops P, Viergever MA, Mendrik AM, De Vries LS, Benders MJ, Isgum I (2016) Automatic segmentation of MR brain images with a convolutional neural network. IEEE Trans Med Imaging 35(5):1252–1261

    Article  Google Scholar 

  • Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79(1):12–49

    Article  MathSciNet  MATH  Google Scholar 

  • Pan Z, Liu S, Fu W (2017) A review of visual moving target tracking. Multimed Tools Appl 76(16):16989–17018

    Article  Google Scholar 

  • Pereira S, Pinto A, Alves V et al (2015) Deep convolutional neural networks for the segmentation of gliomas in multi-sequence MRI. Brainlesion: Glioma, multiple sclerosis, stroke and traumatic brain injuries. Springer International Publishing, Berlin

    Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ (1988) Learning representations by back-propagating errors. Nature 323(6088):696–699

    MATH  Google Scholar 

  • Saha S, Alok AK, Ekbal A (2016) Brain image segmentation using semi-supervised clustering. Exp Syst Appl 52:50–63

    Article  Google Scholar 

  • Shi F, Fan Y, Tang S, Gilmore JH, Lin W, Shen D (2010) Neonatal brain image segmentation in longitudinal MRI studies. Neuro Image 49(1):391–400

    Google Scholar 

  • Sun G, Chen T, Su Y, Li C (2018a) Internet traffic classification based on incremental support vector machines. Mobile Netw Appl 23(4):789–796

    Article  Google Scholar 

  • Sun G, Liang L, Chen T, Xiao F, Lang F (2018) Network traffic classification based on transfer learning. In: Computers & electrical engineering, pp 920–927

  • Urban G, Bendszus M, Hamprecht FA, Kleesiek J (2014) Multi-modal brain tumor segmentation using deep convolutional neural networks. Miccai Brats Challenge, Winning Contribution

  • Wang L, Shi F, Li G, Gao Y, Lin W, Gilmore JH, Shen D (2014) Segmentation of neonatal brain MR images using patch-driven level sets. Neuro Image 84:141–158

    Google Scholar 

  • Zheng S, Jayasumana S, Romeraparedes B, Vineet V, Su Z, Du D, Torr PH (2015) Conditional random fields as recurrent neural networks. In: International conference on computer vision, pp 1529–1537

  • Zikic D, Ioannou Y, Brown M et al (2014) Segmentation of brain tumor tissues with convolutional neural networks. In: MICCAI workshop on multimodal brain tumor segmentation challenge

Download references

Funding

This study was funded by Nature Science Foundation of Shanxi Province (Funding Number: 2015011045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianchao Zeng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animal performed by any of the author.

Additional information

Communicated by A. K. Sangaiah, H. Pham, M.-Y. Chen, H. Lu, F. Mercaldo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jinjing Zhang and Pinle Qin are the equal contributions, they are all the first author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, P., Zhang, J., Zeng, J. et al. A framework combining DNN and level-set method to segment brain tumor in multi-modalities MR image. Soft Comput 23, 9237–9251 (2019). https://doi.org/10.1007/s00500-019-03778-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-019-03778-x

Keywords

Navigation