Skip to main content
Log in

A formal model of semantic computing

  • Foundations
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In the existing works of semantic computing (SC), the word “computing” in the phrase “semantic computing” means computational implementations of semantics reasoning (e.g., ontology reasoning, rule reasoning, semantic query, and semantic search) but is irrelevant to the formal theory of computation (e.g., computational models such as finite automaton, pushdown automaton, and Turing machine). In this paper, we propose a different understanding of “semantic computing” from a computation theory perspective. Concretely, we present a formal model of SC in terms of automata and discuss SC for the two most important and simplest types of automata, namely finite automata and pushdown automata. For each automaton, we first consider a simple case (equivalent concepts) and then we further investigate a general situation (semantically related concepts). That is, some new automata for SC are provided: finite (or pushdown) automaton for SC under equivalent concepts, finite (or pushdown) automaton for SC w.r.t. external words, nondeterministic finite automaton for SC under equivalent concepts (or w.r.t. external words), fuzzy finite (or pushdown) automaton for SC under semantically related concepts, and fuzzy finite (or pushdown) automaton for SC w.r.t. external words. Furthermore, we give some properties of these new automata for SC and prove that these new automata are extensions (or enlargements) of traditional (fuzzy) automata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abello A, Romero O, Pedersen TB, Berlanga R, Nebot V, Aramburu MJ, Simitsis A (2015) Using semantic Web technologies for exploratory OLAP: a survey. IEEE Trans Knowl Data Eng 2(2015):571–588

    Article  Google Scholar 

  • Ait-Ameur Y, Baron M, Bellatreche L, Jean S, Sardet E (2017) Ontologies in engineering: the OntoDB/OntoQL platform. Soft Comput 21(2):369–389

    Article  Google Scholar 

  • Antoniou G, D’Aquin M, Pan JZ (2011) Semantic Web dynamics. J Web Semant 9(3):245–246

    Article  Google Scholar 

  • Baader F, Calvanese D, McGuinness DL, Nardi D, Patel-Schneider PF (2007) The description logic handbook: theory, implementation and applications, 2nd edn. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  • Ben Aouicha M, Hadj Taieb MA, Ben Hamadou A (2018) SISR: system for integrating semantic relatedness and similarity measures. Soft Comput Mar 22(6):1855–1879

    Article  Google Scholar 

  • Berardi D, Rosa FD, Santis LD, Mecella M (2004) Finite state automata as conceptual model for e-Services. J Integr Des Process Sci 8(2):105–121

    Google Scholar 

  • Berners-Lee T, Hendler J, Lassila O (2001) The semantic web. Sci Am 284(5):34–43

    Article  Google Scholar 

  • Bizer C, Lehmann J, Kobilarov G, Auer S, Becker C, Cyganiak R, Hellmann S (2009) DBpedia—a crystallization point for the web of data. J Web Semant 7(3):154–165

    Article  Google Scholar 

  • Blanco R, Halpin H, Herzig DM, Mika P, Pound J, Thompson HS, Tran T (2013) Repeatable and reliable semantic search evaluation. J Web Semant 21:14–29

    Article  Google Scholar 

  • Breslin JG, O’Sullivan D, Passant A, Vasiliu L (2010) Semantic Web computing in industry. Comput Ind 61(8):729–741

    Article  Google Scholar 

  • Cao Y, Chen G (2010) A fuzzy petri-nets model for computing with words. IEEE Trans Fuzzy Syst 18(3):486–499

    Article  Google Scholar 

  • Cao Y, Xia L, Ying M (2013) Probabilistic automata for computing with words. J Comput Syst Sci 79(1):152–172

    Article  MathSciNet  MATH  Google Scholar 

  • Chang YC, Hsieh YL, Chen CC, Hsu WL (2017) A semantic frame-based intelligent agent for topic detection. Soft Comput 21(2):391–401

    Article  Google Scholar 

  • Chiang I, Liu CC, Tsai Y, Kumar A (2015) A discovering latent semantics in web documents using fuzzy clustering. IEEE Trans Fuzzy Syst 23(6):2122–2134

    Article  Google Scholar 

  • Couto FM, Silva MJ, Coutinho PM (2007) Measuring semantic similarity between Gene Ontology terms. Data Knowl Eng 61(1):137–152

    Article  Google Scholar 

  • Dang Z, Ibarra OH, Su J (2005) On composition and lookahead delegation of e-services modeled by automata. Theoret Comput Sci 341(1–3):344–363

    Article  MathSciNet  MATH  Google Scholar 

  • Dubois D, Prade H (2001) Possibility theory, probability theory and multiple-valued logics: a clarification. Ann Math Artif Intell 32(1):35–66

    Article  MathSciNet  MATH  Google Scholar 

  • Eiter T, Ianni G, Lukasiewicz T, Schindlauer R, Tompits H (2008) Combining answer set programming with description logics for the semantic web. Artif Intell 172(12–13):1495–1539

    Article  MathSciNet  MATH  Google Scholar 

  • El-Qurna J, Yahyaoui H, Almulla M (2017) A new framework for the verification of service trust behaviors. Knowl Based Syst 121:7–22

    Article  Google Scholar 

  • Glimm B, Horrocks I, Motik B, Stoilos G, Wang Z (2014) HermiT: an OWL 2 reasoner. J Autom Reason 53(3):245–269

    Article  MATH  Google Scholar 

  • Grau BC, Horrocks I, Motik B, Parsia B, Patel-Schneider P, Sattler U (2008) OWL 2: the next step for OWL. J Web Semant 6(4):309–322

    Article  Google Scholar 

  • Gutierrez C, Hurtado CA, Mendelzon AO, Perez J (2011) Foundations of semantic web databases. J Comput Syst Sci 77(3):520–541

    Article  MathSciNet  MATH  Google Scholar 

  • Haarslev V, Hidde K, Moller R, Wessel M (2012) The RacerPro knowledge representation and reasoning system. Semant Web 3(3):267–277

    Google Scholar 

  • Hao K, Gong Z, Huo C, Sheu PCY (2011) Semantic computing and computer science. Int J Semant Comput 5(1):95–120

    Article  Google Scholar 

  • Hasanzadeh-Mofrad M, Rezvanian A (2018) Learning automata clustering. J Comput Sci 24:379–388

    Article  MathSciNet  Google Scholar 

  • Heymans S, Nieuwenborgh DV, Vermeir D (2007) Open answer set programming for the semantic web. J Appl Logic 5(1):144–169

    Article  MathSciNet  MATH  Google Scholar 

  • Horrocks I, Patel-Schneider PF, Bechhofer S, Tsarkov D (2005) OWL rules: a proposal and prototype implementation. J Web Semant 3(1):23–40

    Article  Google Scholar 

  • Hossein Zadeh PD, Hossein Zadeh MD, Reformat MZ (2017) Feature-driven linguistic-based entity matching in linked data with application in pharmacy. Soft Comput 21(2):353–368

    Article  Google Scholar 

  • Jiang Y (2018) A general type-2 fuzzy model for computing with words. Int J Intell Syst 33(4):713–758

    Article  Google Scholar 

  • Jiang Y, Tang Y (2014) An interval type-2 fuzzy model of computing with words. Inf Sci 281:418–442

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang Y, Tang Y, Deng P (2006) A service composition model based on finite state automata. CAAI Trans Intell Syst 1(2):48–57

    Google Scholar 

  • Jiang Y, Zhang X, Tang Y, Nie R (2015) Feature-based approaches to semantic similarity assessment of concepts using Wikipedia. Inf Process Manag 51(3):215–234

    Article  Google Scholar 

  • Jiang Y, Bai W, Zhang X, Hu J (2017) Wikipedia-based information content and semantic similarity computation. Inf Process Manag 53(1):248–265

    Article  Google Scholar 

  • Jin J, Kim M, Rivett P (2015) Semantic computing for education. Int J Semant Comput 9(3):395–413

    Article  Google Scholar 

  • Kim J, Ostrowski DA, Yamaguch H, Sheu PCY (2013) Semantic computing and business intelligence. Int J Semant Comput 7(1):87–117

    Article  Google Scholar 

  • Kim J, Wang G, Bae ST (2014) A survey of big data technologies and how semantic computing can help. Int J Semant Comput 8(1):99–117

    Article  Google Scholar 

  • Laura L, Me G (2017) Searching the Web for illegal content: the anatomy of a semantic search engine. Soft Comput 21(5):1245–1252

    Article  Google Scholar 

  • Letelier A, Perez J, Pichler R, Skritek S (2013) Static analysis and optimization of semantic web queries. ACM Trans Database Syst 38(4):Article 25

    Article  MathSciNet  MATH  Google Scholar 

  • Li Y, Bandar ZA, McLean D (2003) An approach for measuring semantic similarity between words using multiple information sources. IEEE Trans Knowl Data Eng 15(4):871–882

    Article  Google Scholar 

  • Liu H, Bao H, Xu D (2012) Concept vector for semantic similarity and relatedness based on WordNet structure. J Syst Softw 85(2):370–381

    Article  Google Scholar 

  • Medelyan O, Milne D, Legg C, Witten IH (2009) Mining meaning from Wikipedia. Int J Hum Comput Stud 67(9):716–754

    Article  Google Scholar 

  • Moradabadi B, Meybodi MR (2018) Link prediction in weighted social networks using learning automata. Eng Appl Artif Intell 70:16–24

    Article  MATH  Google Scholar 

  • Pirro G (2009) A semantic similarity metric combining features and intrinsic information content. Data Knowl Eng 68(11):1289–1308

    Article  Google Scholar 

  • Ponzetto SP, Strube M (2007) Knowledge derived from Wikipedia for computing semantic relatedness. J Artif Intell Res 30:181–212

    Article  MATH  Google Scholar 

  • Pulido JRG, Ruiz MAG, Herrera R, Cabello E, Legrand S, Elliman D (2006) Ontology languages for the semantic web: a never completely updated review. Knowl Based Syst 19(7):489–497

    Article  Google Scholar 

  • Punnoose R, Crainiceanu A, Rapp D (2015) SPARQL in the cloud using Rya. Inf Syst 48:181–195

    Article  Google Scholar 

  • Puttonen J, Lobov A, Soto MAC, Lastra JLM (2015) Planning-based semantic web service composition in factory automation. Adv Eng Inform 29(4):1041–1054

    Article  Google Scholar 

  • Qiu D, Wang H (2005) A probabilistic model of computing with words. J Comput Syst Sci 70(2):176–200

    Article  MathSciNet  MATH  Google Scholar 

  • Ramos L (2015) Semantic Web for manufacturing, trends and open issues: toward a state of the art. Comput Ind Eng 90:444–460

    Article  Google Scholar 

  • Ross S (2012) A first course in probability, 9th edn. Pearson, London

    Google Scholar 

  • Shamsizadeh M, Zahedi MM (2016) Intuitionistic general fuzzy automata. Soft Comput 20(9):3505–3519

    Article  MATH  Google Scholar 

  • Sheu PCY, Yu H, Ramamoorthy CV, Joshi AK, Zadeh LA (2010) Semantic computing. IEEE Press, Wiley, New York

    Book  MATH  Google Scholar 

  • Sipser M (2013) Introduction of the theory of computation, 3rd edn. Cengage Learning, Boston

    MATH  Google Scholar 

  • Sirin E, Parsia B, Grau BC, Kalyanpur A, Katz Y (2007) Pellet: a practical OWL-DL reasoner. J Web Semant 5(2):51–53

    Article  Google Scholar 

  • Sohn M, Jeong S, Kim J, Lee HJ (2017) Crowdsourced healthcare knowledge creation using patients’ health experience-ontologies. Soft Comput 21(18):5207–5221

    Article  Google Scholar 

  • Staab S, Studer R (2009) Handbook on ontologies, international handbooks on information systems, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  • Storey VC, Burton-Jones A, Sugumaran V, Purao S (2008) CONQUER: a methodology for context-aware query processing on the World Wide Web. Inf Syst Res 19(1):3–25

    Article  Google Scholar 

  • Tappolet J, Kiefer C, Bernstein A (2010) Semantic web enabled software analysis. J Web Semant 8(2–3):225–240

    Article  Google Scholar 

  • Wang H, Qiu D (2003) Computing with words via turing machines: a formal approach. IEEE Trans Fuzzy Syst 11(6):742–753

    Article  Google Scholar 

  • Wang HH, Gibbins N, Payne TR, Redavid D (2012) A formal model of the Semantic Web Service Ontology (WSMO). Inf Syst 37(1):33–60

    Article  Google Scholar 

  • Wang F, Hu L, Zhou J, Hu J, Zhao K (2017) A semantics-based approach to multi-source heterogeneous information fusion in the internet of things. Soft Comput 21(8):2005–2013

    Article  Google Scholar 

  • Ying M (2002) A formal model of computing with words. IEEE Trans Fuzzy Syst 10(5):640–652

    Article  Google Scholar 

  • Zadeh L (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  MATH  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China under Grant Nos. 61772210 and 61272066; Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2018); the Project of Science and Technology in Guangzhou in China under Grant No. 201807010043; the key project in universities in Guangdong Province of China under Grant No. 2016KZDXM024; and the Innovation Project of Postgraduate Education in Guangdong Province of China under Grant No. 2016SFKC_13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuncheng Jiang.

Ethics declarations

Conflict of interest

Author Yuncheng Jiang declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Communicated by A. Di Nola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y. A formal model of semantic computing. Soft Comput 23, 5411–5429 (2019). https://doi.org/10.1007/s00500-018-3502-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-018-3502-5

Keywords

Navigation