Skip to main content
Log in

Cell-like spiking neural P systems with evolution rules

  • Foundations
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Cell-like spiking neural P systems (abbreviated as cSN P systems) are a class of distributed and parallel computation devices which combine a hierarchical arrangement of membranes in rewriting P systems and evolution rules in spiking neural P systems. The existing results show that cSN P systems are Turing universal with replication target indication or general spiking rules that produce more spikes than the ones consumed. However, with neither the replication target indication nor general spiking rules, cSN P systems can only compute finite set of numbers. In this work, we introduce evolution rules into cSN P systems to compensate the loss of computation power, the application of which depends on the contents of a region. With an evolution rule, every copy of spike evolves to a designate multiset over one kind of objects. We prove that cSN P systems with evolution rules are computationally universal in the case of using traditional spiking rules while avoiding the replication target indication. We also investigate the influence of the target indications on the computation power of cSN P systems with evolution rules. The results show that removing some target indications has no influence on computation power but a corresponding increase in the number of membranes. Besides, the results give a solution to the open problem that seeks alternative methods for the replication of spikes in a cSN P system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bernardini F, Gheorghe M (2005) Cell communication in tissue P systems: universality results. Soft Comput 9(9):640–649

    Article  MATH  Google Scholar 

  • Cavaliere M (2003) Evolution-communication P systems. In: Păun G, Rozenberg G, Salomaa A, Zandron C (eds) Membrane computing. WMC 2002. Lecture notes in computer science, vol 2597. Springer, Berlin

    Google Scholar 

  • Cavaliere M, Ibarra OH, Păun G, Egecioglu O, Ionesc M, Woodworth S (2009) Asynchronous spiking neural P systems. Theor Comput Sci 410(24):2352–2364

    Article  MathSciNet  MATH  Google Scholar 

  • Chen H, Freund R, Ionescu M, Pérez-Jiménez MJ (2007) On string languages generated by spiking neural P systems. Fundam Inf 75(1):141–162

    MathSciNet  MATH  Google Scholar 

  • Díaz-Pernil D, Peña-Cantillana F, Gutiérrez-Naranjo MA (2013) A parallel algorithm for skeletonizing images by using spiking neural P systems. Neurocomputing 115:81–91

    Article  Google Scholar 

  • Dorigo M, Bonabeau E, Theraulaz G (2000) Ant algorithms and stigmergy. Future Gener Comput Syst 16(8):851–871

    Article  Google Scholar 

  • Fahmi A, Abdullah S, Amin F, Ali A (2017a) Precursor selection for sol–gel synthesis of titanium carbide nanopowders by a new cubic fuzzy multi-attribute group decision-making model. J Intell Syst

  • Fahmi A, Abdullah S, Amin F, Siddiqui N (2017b) Aggregation operators on triangular cubic fuzzy numbers and its application to multi-criteria decision making problems. J Intell Fuzzy Syst 33(6):3323–3337

    Article  Google Scholar 

  • Fahmi A, Abdullah S, Amin F, Ali A (2018a) Weighted average rating (war) method for solving group decision making problem using triangular cubic fuzzy hybrid aggregation (tcfha). Punjab Univ J Math 50(1):23–34

    MathSciNet  Google Scholar 

  • Fahmi A, Abdullah S, Amin F, Ahmed R, Ali A (2018b) Triangular cubic linguistic hesitant fuzzy aggregation operators and their application in group decision making. J Intell Fuzzy Syst 34(4):2401–2416

    Article  Google Scholar 

  • Freund R, Păun A (2005) P systems with active membranes and without polarizations. Soft Comput 9(9):657–663

    Article  MATH  Google Scholar 

  • Frisco P, Gheorghe M, Pérez-Jiménez MJ (2014) Applications of membrane computing in systems and synthetic biology. Springer, Berlin

    Book  Google Scholar 

  • García-Quismondo M, Levin M, Lobo D (2017) Modeling regenerative processes with membrane computing. Inf Sci 381:229–249

    Article  Google Scholar 

  • Hopcroft JE, Motwani R, Ullman JD (2001) Introduction to automata theory, languages, and computation, 3rd edn. Addison Wesley, Pearson Education India, New Jersey

    MATH  Google Scholar 

  • Ibarra OH, Păun A, Păun G, Rodríguez-Patón A, Sosík P, Woodworth S (2007) Normal forms for spiking neural P systems. Theor Comput Sci 372(2–3):196–217

    Article  MathSciNet  MATH  Google Scholar 

  • Ibarra OH, Woodworth S (2006) Characterizations of some restricted spiking neural P systems. In: Hoogeboom HJ, Păun G, Rozenberg G, Salomaa A (eds) Membrane computing, vol 4361. Springer, Berlin, pp 424–442

    Chapter  Google Scholar 

  • Ionescu M, Păun G, Yokomori T (2006) Spiking neural P systems. Fund Inf 71(2):279–308

    MathSciNet  MATH  Google Scholar 

  • Ionescu M, Păun G, Yokomori T (2007) Spiking neural P systems with an exhaustive use of rules. Int J Unconv Comput 3(2):135–153

    Google Scholar 

  • Jain Anil K, Duin Robert P (2000) Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell 22(1):4–37

    Article  Google Scholar 

  • Korec I (1996) Small universal register machines. Theor Comput Sci 168:267–301

    Article  MathSciNet  MATH  Google Scholar 

  • Maass W (1997) Networks of spiking neurons: the third generation of neural network models. Neural Netw 10(9):1659–1671

    Article  Google Scholar 

  • Manca V, Bianco L (2008) Biological networks in metabolic P systems. BioSystems 91(3):489–498

    Article  Google Scholar 

  • Martin-Vide C, Pazos J, Păun G (2003) Tissue P systems. Theor Comput Sci 296(2):295–326

    Article  MathSciNet  MATH  Google Scholar 

  • Minsky M (1967) Computation: finite and infinite machines. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Neary T (2010) A boundary between universality and non-universality in extended spiking neural P systems. In: Dediu A-H, Fernau H, Martín-Vide C (eds) Language and automata theory and applications. Springer, Berlin, pp 475–487

    Chapter  Google Scholar 

  • Păun G (2000) Computing with membranes. J Comput Syst Sci 61(1):108–143

    Article  MathSciNet  MATH  Google Scholar 

  • Păun G (2001) P systems with active membranes: attacking NP-complete problems. J Autom Lang Comb 6:75–90

    MathSciNet  MATH  Google Scholar 

  • Păun G (2002) Membrane computing: an introduction. Springer, Berlin

    Book  MATH  Google Scholar 

  • Păun G, Păun R (2006) Membrane computing and economics: numerical P systems. Fund Inf 73(1–2):213–227

    MathSciNet  MATH  Google Scholar 

  • Păun A, Păun G (2007) Small universal spiking neural P systems. BioSystems 90(1):48–60

    Article  MATH  Google Scholar 

  • Păun G, Rozenberg G (2002) A guide to membrane computing. Theor Comput Sci 287(1):73–100

    Article  MathSciNet  MATH  Google Scholar 

  • Păun G, Pérez-Jiménez MJ, Pazos J, Rodríguez-Patón A (2005) Symport/antiport P systems with three objects are universal. Fund Inf 64(1–4):353–367

    MathSciNet  MATH  Google Scholar 

  • Păun G, Rozenberg G, Salomaa A (2010) The Oxford handbook of membrane computing. Oxford University Press, New York

    Book  MATH  Google Scholar 

  • Peng H, Wang J, Pérez-Jiménez MJ, Wang H, Shao J, Wang T (2013) Fuzzy reasoning spiking neural P systems for fault diagnosis. Inf Sci 235:106–116

    Article  MathSciNet  MATH  Google Scholar 

  • Song B, Pérez-Jiménez MJ, Pan L (2015a) Computational efficiency and universality of timed P systems with membrane creation. Soft Comput 19(11):3043–3053

    Article  MATH  Google Scholar 

  • Song T, Xu J, Pan L (2015b) On the universality and non-universality of spiking neural P systems with rules on synapses. IEEE Trans NanoBiosci 14(8):960–966

    Article  Google Scholar 

  • Song B, Pan L, Pérez-Jiménez MJ (2016) Cell-like P systems with channel states and symport/antiport rules. IEEE Trans Nanobiosci 15(6):555–566

    Article  Google Scholar 

  • Song B, Zhang C, Pan L (2017) Tissue-like P systems with evolutional symport/antiport rules. Inf Sci 378(1):177–193

    Article  MathSciNet  Google Scholar 

  • Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68(4):978–989

    Article  Google Scholar 

  • Wu T, Zhang Z, Pan L (2016a) On languages generated by cell-like spiking neural P systems. IEEE Trans NanoBiosci 15(5):455–466

    Article  Google Scholar 

  • Wu T, Zhang Z, Păun G, Pan L (2016b) On the universality of colored one-catalyst P systems. Fund Inf 144(2):205–212

    MathSciNet  MATH  Google Scholar 

  • Wu T, Zhang Z, Păun G, Pan L (2016c) Cell-like spiking neural P systems. Theor Comput Sci 623:180–189

    Article  MathSciNet  MATH  Google Scholar 

  • Zeng X, Xu L, Liu X, Pan L (2014) On languages generated by spiking neural P systems with weights. Inf Sci 278:423–433

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang G, Rong H, Neri F, Pérez-Jiménez MJ (2014) An optimization spiking neural P system for approximately solving combinatorial optimization problems. Int J Neural Syst 24(5):1–16

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (61320106005, 61472154, and 61502186) and China Postdoctoral Science Foundation (2016M592335).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Communicated by A. Di Nola.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, T., Xu, J., Jiang, S. et al. Cell-like spiking neural P systems with evolution rules. Soft Comput 23, 5401–5409 (2019). https://doi.org/10.1007/s00500-018-3500-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-018-3500-7

Keywords

Navigation