Skip to main content
Log in

Intelligent fractional-order control-based projective synchronization for chaotic optical systems

  • Foundations
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This paper investigates the problem of chaos synchronization based on fractional-order intelligent sliding-mode control approach for a class of fractional-order chaotic optical systems with unknown dynamics and disturbances. Two simple but effective fractional dynamic sliding surfaces with some desired stability features are adequately used to derive two fuzzy sliding-mode controllers. Fuzzy systems are used to online estimate the nonlinear functions. The stability analysis of the closed-loop system is rigorously performed by means of a fractional Lyapunov theory. Finally, some illustrative simulation examples are given to demonstrate the applicability and effectiveness of the proposed controllers. The obtained simulation results clearly confirm that the proposed chaos synchronization controllers are not only strongly robust with respect to the system’s uncertainties and external disturbances, but also one of these controllers can significantly reduce the chattering effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Abdelouahab MS, Hamri N (2014) Fractional-order hybrid optical system and its chaos control synchronization. Electron J Theor Phys 11:49–62

    Google Scholar 

  • Aghaba MP (2012) Comments on “H synchronization of uncertain fractional order chaotic systems: adaptive fuzzy approach”. ISA Trans 5:11–12

    Article  Google Scholar 

  • Aghababa MP (2014) A Lyapunov-based control scheme for robust stabilization of fractional chaotic systems. Nonlinear Dyn 78:2129–2140

    Article  MathSciNet  MATH  Google Scholar 

  • Aziz-Alaoui MA (2005) A survey on chaos synchronization. In: Proceedings of the 12th IEEE-ICECS, December 11–15, pp 523–527

  • Behinfaraz R, Badamchizadeh MA (2015) Synchronization of different fractional-ordered chaotic systems using optimized active control. In Proceedings of the 6th international conference on modeling, simulation, and applied optimization (ICMSAO)

  • Benzaoui M, Chekireb H, Tadjine M, Boulkroune A (2016) Trajectory tracking with obstacle avoidance of redundant manipulator based on fuzzy inference systems. Neurocomputing 196:23–30

    Article  Google Scholar 

  • Bhalekar S, Daftardar-Gejji V (2010) Synchronization of different fractional order chaotic systems using active control. Commun Nonlinear Sci Numer Simul 15:3536–3546

    Article  MATH  Google Scholar 

  • Boulkroune A (2016) A fuzzy adaptive control approach for nonlinear systems with unknown control gain sign. Neurocomputing 179:318–325

    Article  Google Scholar 

  • Boulkroune A, Bouzeriba A, Hamel S, Bouden T (2015) Adaptive fuzzy control-based projective synchronization of uncertain nonaffine chaotic systems. Complexity 21:180–192

    Article  MathSciNet  MATH  Google Scholar 

  • Bouzeriba A, Boulkroune A, Bouden T (2015) Fuzzy adaptive synchronization of a class of fractional-order chaotic systems. In: Proceedings of the international conference on control, engineering and information technology (CEIT)

  • Bouzeriba A, Boulkroune A, Bouden T (2016a) Fuzzy generalized projective synchronization of incommensurate fractional-order chaotic systems. Neurocomputing 173:606–614

    Article  MATH  Google Scholar 

  • Bouzeriba A, Boulkroune A, Bouden T (2016b) Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems. Int J Mach Learn Cybern 7:893–908

    Article  MATH  Google Scholar 

  • Bouzeriba A, Boulkroune A, Bouden T (2016c) Projective synchronization of two different fractional-order chaotic systems via adaptive fuzzy control. Neural Comput Appl 27:1349–1360

    Article  MATH  Google Scholar 

  • Chen G, Dong X (1998) From chaos to order perspectives methodologies and applications. World Scientific Pub, Singapore

    Book  MATH  Google Scholar 

  • Efe MO (2008) Fractional fuzzy adaptive sliding mode control of a 2-DOF direct-drive robot arm. IEEE Trans Syst Man Cybernet 38:1561–1570

    Article  Google Scholar 

  • Efe MÖ, Kasnakog̃lu C (2008) A fractional adaptation law for sliding mode control. Int J Adapt Control Signal Process 22:968–986

    Article  MathSciNet  MATH  Google Scholar 

  • Faieghi MR, Kuntanapreeda S, Delavari H, Baleanu D (2014) Robust stabilization of fractional-order chaotic systems with linear controllers: LMIC based sufficient conditions. J Vib Control 20:1042–1051

    Article  MathSciNet  Google Scholar 

  • Hamel S, Boulkroune A (2016) A generalized function projective synchronization scheme for uncertain chaotic systems subject to input nonlinearities. Int J Gen Syst 45:689–710

    Article  MathSciNet  MATH  Google Scholar 

  • Li Y, Chen YQI (2009) Podlubny. Mittag-Leffler stability of fractional order nonlinear dynamic systems, Automatica 45:1965–1969

    Google Scholar 

  • Li Z, Zhang Z (2011) Chaotic communication based on single mode laser Lorenz system. In: International conference on electronics, communications and control (ICECC). IEEE, pp 1928–1931

  • Li Y, Chen YQ, Podlubny I (2010) Stability of fractional-order nonlinear dynamic systems: lyapunov direct method and generalized Mittag–Leffler stability. Comput Math Appl 59:1810–1821

    Article  MathSciNet  MATH  Google Scholar 

  • Li-Ming W, Yong-Guang T, Yong-Quan C, Feng W (2014) Generalized projective synchronization of the fractional-order chaotic system using adaptive fuzzy sliding mode control. Chin Phys B 23(10):100501

    Article  Google Scholar 

  • Lin TC, Kuo CH (2011) H synchronization of uncertain fractional order chaotic systems: adaptive fuzzy approach. ISA Trans 50:548–556

    Article  Google Scholar 

  • Lin TC, Lee TY (2011) Chaos synchronization of uncertain fractional-order chaotic systems with time delay based on adaptive fuzzy sliding mode control. IEEE Trans Fuzzy Syst 19:623–635

    Article  Google Scholar 

  • Mahmoudian M, Ghaderi R, Ranjbar A, Sadati J, Hosseinnia SH, Momani S (2010) Synchronization of fractional-order chaotic system via adaptive PID controller. In: Baleanu D, Güvenç ZB, Machado JAT (eds) New trends in nanotechnology and fractional calculus applications. Springer, Berlin, pp 445–452

    Chapter  Google Scholar 

  • Matignon D (1996) Stability results of fractional differential equations with applications to control processing. In: IEEE-SMC proceedings of the computational engineering in systems and application multi-conference, IMACS. Lille, vol 2, pp 963–968

  • Maybhate A, Amritkar RE (1999) Use of synchronization and adaptive control in parameter estimation from a time series. Phys Rev E 59:284–293

    Article  Google Scholar 

  • Mitschke F, Fluggen N (1984) Chaotic behavior of a hybrid optical bistable system without time delay. Appl Phys B 35:59–64

    Article  Google Scholar 

  • Pan L, Zhou W, Zhou L, Sun K (2011) Chaos synchronization between two different fractional-order hyperchaotic systems. Commun Nonlinear Sci Numer Simul 16:2628–2640

    Article  MathSciNet  MATH  Google Scholar 

  • Pisano A, Jelicic Z, Usai E (2010) Sliding mode control approaches to the robust regulation of linear multivariable fractional-order dynamics. Int J Robust Nonlinear Control 20:2021–2044

    Article  MathSciNet  MATH  Google Scholar 

  • Podlubny I (1999) Fractional differential equations. Academic Press, San Diego

    MATH  Google Scholar 

  • Pyragas K (1992) Continuous control of chaos by self-controlling feedback. Phys Lett A 170:421–428

    Article  Google Scholar 

  • Rigatos G, Zhu G, Yousef H, Boulkroune A (2016) Flatness-based adaptive fuzzy control of electrostatically actuated MEMS using output feedback. Fuzzy Sets Syst 290:138–157

    Article  MathSciNet  MATH  Google Scholar 

  • Si-Ammour A, Djennoune S, Bettayeb M (2009) A sliding mode control for linear fractional systems with input and state delays. Commun Nonlinear Sci Numer Simul 14:2310–2318

    Article  MathSciNet  MATH  Google Scholar 

  • Tavazoei MS (2012) Comments on “Chaos synchronization of uncertain fractional-order chaotic systems with time delay based on adaptive fuzzy sliding mode control”. IEEE Trans Fuzzy Syst 20:993–995

    Article  Google Scholar 

  • Wang LX (1994) Adaptive fuzzy systems and control: design and stability analysis. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Wang J, Zhang Y (2006) Designing synchronization schemes for chaotic fractional order unified systems. Chaos Solitons Fractals 30:1265–1272

    Article  MathSciNet  MATH  Google Scholar 

  • Wang X, Zhang X, Ma C (2012) Modified projective synchronization of fractional order chaotic systems via active sliding mode control. Nonlinear Dyn 69:511–517

    Article  MathSciNet  MATH  Google Scholar 

  • Wu XJ, Shen SL (2009) Chaos in the fractional-order Lorenz system. Int J Comput Math 86:1274–1282

    Article  MathSciNet  MATH  Google Scholar 

  • Xi H, Yu S, Zhang R, Xu L (2014) Adaptive impulsive synchronization for a class of fractional-order chaotic and hyper-chaotic systems. Optik Int J Light Electron Opt 125:2036–2040

    Article  Google Scholar 

  • Yan JJ, Hung ML, Chiang TY, Yang YS (2006) Robust synchronization of chaotic systems via adaptive sliding mode control. Phys Lett A 356:220–225

    Article  MATH  Google Scholar 

  • Zhang W, Li J, Ding C (2016) Anti-synchronization control for delayed memristor-based distributed parameter NNs with mixed boundary conditions. Adv Differ Equ 2016:320

    Article  MathSciNet  MATH  Google Scholar 

  • Zouari F, Boulkroune A, Ibeas A, Arefi MM (2017) Observer-based adaptive neural network control for a class of MIMO uncertain nonlinear time-delay non-integer-order systems with asymmetric actuator saturation. Neural Comput Appl 28:993–1010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Boulkroune.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Human and animal participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Communicated by A. Di Nola.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boubellouta, A., Boulkroune, A. Intelligent fractional-order control-based projective synchronization for chaotic optical systems. Soft Comput 23, 5367–5384 (2019). https://doi.org/10.1007/s00500-018-3490-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-018-3490-5

Keywords

Navigation