Skip to main content
Log in

Natural selection methods for artificial bee colony with new versions of onlooker bee

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Artificial bee colony (ABC) algorithm is one of the most recent swarm intelligence-based algorithms simulate the foraging behavior of honey bees in their hive. ABC starts with a colony of artificial bees with sole aim of discovering the place of food sources with high nectar amount using the solution search equation in the employed bee and onlooker bee operators. However, the solution search equation is good in exploration and poor in exploitation. In this paper, the solution search equation of the onlooker bee is modified by using a value of the fittest food sources selected by a set of selection schemes inspired from the evolutionary algorithms. This is to guide the search process of onlooker bee toward the fittest food sources from the population in order to empower the exploitation capability and convergence. Four selection schemes are incorporated with the ABC algorithm to choose the fittest food sources in four versions as follows: global-best, tournament, linear rank, and exponential rank. For evaluation purposes, 10 classical benchmark optimization functions are used to study the sensitivity analysis of each ABC algorithm to its parameters. The performance of the proposed ABC versions is compared with the original ABC version in order to study the effectiveness of the modifications. In addition, a comparative evaluation of ABC algorithms is carried out against the state-of-the-art methods that worked on CEC2005 benchmark functions, CEC2015 benchmark functions, and two real-world cases of economic load dispatch problem. The experimental results show that the selection schemes incorporated within the search equation of the onlooker bee directly affects the performance of ABC algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ab Wahab MN, Nefti-Meziani S, Atyabi A (2015) A comprehensive review of swarm optimization algorithms. PLoS ONE 10(5):1–36

    Article  Google Scholar 

  • Abu-Mouti FS, El-Hawary ME (2012) Overview of artificial bee colony (ABC) algorithm and its applications. In: 2012 IEEE international conference on systems conference (SysCon). IEEE, pp 1–6

  • Acan A, Ünveren A (2015) A two-stage memory powered great deluge algorithm for global optimization. Soft Comput 19(9):2565–2585

    Article  Google Scholar 

  • Akay B, Karaboga D (2012) A modified artificial bee colony algorithm for real-parameter optimization. Inf Sci 192:120–142

    Article  Google Scholar 

  • Al-Betar MA (2017) \(\beta \)-hill climbing: an exploratory local search. Neural Comput Appl 28(1):153–168. https://doi.org/10.1007/s00521-016-2328-2

    Article  Google Scholar 

  • Al-Betar MA, Doush IA, Khader AT, Awadallah MA (2012) Novel selection schemes for harmony search. Appl Math Comput 218(10):6095–6117

    MATH  Google Scholar 

  • Al-Betar MA, Khader AT, Awadallah MA, Alawan MH, Zaqaibeh B (2013a) Cellular harmony search for optimization problems. J Appl Math 2013:1–20

  • Al-Betar MA, Khader AT, Geem ZW, Doush IA, Awadallah MA (2013b) An analysis of selection methods in memory consideration for harmony search. Appl Math Comput 219(22):10753–10767

    MathSciNet  MATH  Google Scholar 

  • Al-Betar MA, Awadallah MA, Khader AT, Abdalkareem ZA (2015) Island-based harmony search for optimization problems. Expert Syst Appl 42(4):2026–2035

    Article  Google Scholar 

  • Al-Betar MA, Awadallah MA, Khader AT, Bolaji AL (2016) Tournament-based harmony search algorithm for non-convex economic load dispatch problem. Appl Soft Comput 47:449–459

    Article  Google Scholar 

  • Al-Betar MA, Awadallah MA, Khader AT, Bolaji AL, Almomani A (2018) Economic load dispatch problems with valve-point loading using natural updated harmony search. Neural Comput Appl 29(10):767–781. https://doi.org/10.1007/s00521-016-2611-2

    Article  Google Scholar 

  • Al-Dujaili A, Subramanian K, Suresh S (2015) Humancog: a cognitive architecture for solving optimization problems. In: 2015 IEEE congress on, evolutionary computation (CEC). IEEE, pp 3220–3227

  • Alsumait J, Sykulski J, Al-Othman A (2010) A hybrid GA-PS-SQP method to solve power system valve-point economic dispatch problems. Appl Energy 87(5):1773–1781

    Article  Google Scholar 

  • Alzaqebah M, Abdullah S (2011) Comparison on the selection strategies in the artificial bee colony algorithm for examination timetabling problems. Int J Soft Comput Eng 1(5):158–163

    MATH  Google Scholar 

  • Amjady N, Sharifzadeh H (2010) Solution of non-convex economic dispatch problem considering valve loading effect by a new modified differential evolution algorithm. Int J Electr Power Energy Syst 32(8):893–903

    Article  Google Scholar 

  • Auger A, Hansen N (2005a) Performance evaluation of an advanced local search evolutionary algorithm. In: The 2005 IEEE congress on, evolutionary computation (CEC’2005), vol 2. IEEE, pp 1777–1784

  • Auger A, Hansen N (2005b) A restart cma evolution strategy with increasing population size. In: The 2005 IEEE congress on, evolutionary computation (CEC’2005), vol 2. IEEE, pp 1769–1776

  • Awad N, Ali MZ, Reynolds RG (2015) A differential evolution algorithm with success-based parameter adaptation for CEC2015 learning-based optimization. In: 2015 IEEE congress on, evolutionary computation (CEC). IEEE, pp 1098–1105

  • Awadallah MA, Bolaji AL, Al-Betar MA (2015) A hybrid artificial bee colony for a nurse rostering problem. Appl Soft Comput 35:726–739

    Article  Google Scholar 

  • Aydın D, Sffltzle T (2015) A configurable generalized artificial bee colony algorithm with local search strategies. In: 2015 IEEE congress on, evolutionary computation (CEC). IEEE, pp 1067–1074

  • Azizipanah-Abarghooee R, Niknam T, Roosta A, Malekpour AR, Zare M (2012) Probabilistic multiobjective wind–thermal economic emission dispatch based on point estimated method. Energy 37(1):322–335

    Article  Google Scholar 

  • Back T (1994) Selective pressure in evolutionary algorithms: a characterization of selection mechanisms. In: Proceedings of the first IEEE conference on, evolutionary computation, 1994. IEEE world congress on computational intelligence, vol 1. pp 57–62

  • Bäck T (1996) Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Baker JE (1985a) Adaptive selection methods for genetic algorithms. In: Proceedings of an international conference on genetic algorithms and their applications, pp 100–111

  • Baker JE (1985b) Adaptive selection methods for genetic algorithms. In: Proceedings of an international conference on genetic algorithms and their applications, pp 100–111

  • Ballester PJ, Stephenson J, Carter JN, Gallagher K (2005) Real-parameter optimization performance study on the CEC-2005 benchmark with SPC-PNX. In: The 2005 IEEE congress on, evolutionary computation (CEC’2005), vol 1. IEEE, pp 498–505

  • Bhattacharya A, Chattopadhyay PK (2010a) Hybrid differential evolution with biogeography-based optimization for solution of economic load dispatch. IEEE Trans Power Syst 25(4):1955–1964

    Article  Google Scholar 

  • Bhattacharya A, Chattopadhyay PK (2010b) Solving complex economic load dispatch problems using biogeography-based optimization. Expert Syst Appl 37(5):3605–3615

    Article  Google Scholar 

  • Blum C, Roli A (2003) Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput Surv (CSUR) 35(3):268–308

    Article  Google Scholar 

  • Bolaji AL, Khader AT, Al-Betar MA, Awadallah MA (2011) An improved artificial bee colony for course timetabling. In: 2011 Sixth international conference on, bio-inspired computing: theories and applications (BIC-TA). IEEE, pp 9–14

  • Bolaji AL, Khader AT, Al-Betar MA, Awadallah MA (2013) Artificial bee colony algorithm, its variants and applications: a survey. J Theor Appl Inf Technol 47(2):434–459

    Google Scholar 

  • Bolaji AL, Khader AT, Al-Betar MA, Awadallah MA (2014) University course timetabling using hybridized artificial bee colony with hill climbing optimizer. J Comput Sci 5(5):809–818

    Article  Google Scholar 

  • Bolaji AL, Khader AT, Al-Betar MA, Awadallah MA (2015) A hybrid nature-inspired artificial bee colony algorithm for uncapacitated examination timetabling problems. J Intell Syst 24(1):37–54

    Google Scholar 

  • BoussaïD I, Lepagnot J, Siarry P (2013) A survey on optimization metaheuristics. Inf Sci 237:82–117

    Article  MathSciNet  MATH  Google Scholar 

  • Cai J, Li Q, Li L, Peng H, Yang Y (2012a) A hybrid CPSO-SQP method for economic dispatch considering the valve-point effects. Energy Convers Manag 53(1):175–181

    Article  Google Scholar 

  • Cai J, Li Q, Li L, Peng H, Yang Y (2012b) A hybrid FCASP-SQO method for solving the economic dispatch problems with valve-point effects. Energy 38(1):346–353

    Article  Google Scholar 

  • Ceschia S, Thanh NT, Haspeslagh S, Schaerf A (2014) The second international nurse rostering competition. In: 10th international conference of the practice and theory of automated timetabling. PTAT, pp 26–29

  • Chakraborty S, Senjyu T, Yona A, Saber A, Funabashi T (2011) Solving economic load dispatch problem with valve-point effects using a hybrid quantum mechanics inspired particle swarm optimisation. Gener Transm Distrib IET 5(10):1042–1052

    Article  Google Scholar 

  • Coelho L d S, Mariani VC (2009) An improved harmony search algorithm for power economic load dispatch. Energy Convers Manag 50(10):2522–2526

    Article  Google Scholar 

  • Coelho Ld S, Mariani VC (2010) An efficient cultural self-organizing migrating strategy for economic dispatch optimization with valve-point effect. Energy Convers Manag 51(12):2580–2587

    Article  Google Scholar 

  • Črepinšek M, Liu S-H, Mernik M (2013) Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput Surv (CSUR) 45(3):35

    Article  MATH  Google Scholar 

  • Cui Z, Gu X (2015) An improved discrete artificial bee colony algorithm to minimize the makespan on hybrid flow shop problems. Neurocomputing 148:248–259

    Article  Google Scholar 

  • Dorigo M, Birattari M (2010) Ant colony optimization. In: Sammut C, Webb G (eds) Encyclopedia of machine learning. Springer, Berlin, pp 36–39

    Google Scholar 

  • Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science, vol 1, pp 39–43. New York, NY

  • Eiben AE, Smith JE (2003) Introduction to evolutionary computing, vol 53. Springer, Berlin

    Book  MATH  Google Scholar 

  • El-Abd M (2015) Hybrid cooperative co-evolution for the CEC15 benchmarks. In: 2015 IEEE congress on, evolutionary computation (CEC). IEEE, pp 1053–1058

  • Fraga ES, Yang L, Papageorgiou LG (2012) On the modelling of valve point loadings for power electricity dispatch. Appl Energy 91(1):301–303

    Article  Google Scholar 

  • Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17(12):4831–4845

    Article  MathSciNet  MATH  Google Scholar 

  • Gao W-F, Liu S-Y (2012) A modified artificial bee colony algorithm. Comput Oper Res 39(3):687–697

    Article  MATH  Google Scholar 

  • Gao W, Liu S, Huang L (2012) A global best artificial bee colony algorithm for global optimization. J Comput Appl Math 236(11):2741–2753

    Article  MathSciNet  MATH  Google Scholar 

  • Gao KZ, Suganthan PN, Chua TJ, Chong CS, Cai TX, Pan QK (2015) A two-stage artificial bee colony algorithm scheduling flexible job-shop scheduling problem with new job insertion. Expert Syst Appl 42(21):7652–7663

    Article  Google Scholar 

  • García-Martínez C, Lozano M (2005) Hybrid real-coded genetic algorithms with female and male differentiation. In: The 2005 IEEE congress on, evolutionary computation (CEC’2005), vol 1. IEEE, pp 896–903

  • Goldberg DE, Deb K (1991) A comparative analysis of selection schemes used in genetic algorithms. In Foundations of genetic algorithms. Morgan Kaufmann, San Francisco, CA, pp 69–93

  • Goldberg D, Deb K, Korb B (1989) Messy genetic algorithms: motivation, analysis, and first results. Complex Syst 3:493–530

    MathSciNet  MATH  Google Scholar 

  • Guo S-M, Tsai J S-H, Yang C-C, Hsu P-H (2015) A self-optimization approach for l-shade incorporated with eigenvector-based crossover and successful-parent-selecting framework on CEC 2015 benchmark set. In: 2015 IEEE congress on, evolutionary computation (CEC). IEEE, pp 1003–1010

  • Hancock PJB (1994) An empirical comparison of selection methods in evolutionary algorithms. In: Selected papers from AISB workshop on evolutionary computing, London, UK. Springer-Verlag, pp 80–94

  • Hemamalini S, Simon SP (2010) Artificial bee colony algorithm for economic load dispatch problem with non-smooth cost functions. Electric Power Compon Syst 38(7):786–803

    Article  Google Scholar 

  • Holland JH (1975) Adaptation in natural and artificial systems. The University of Michigan Press, Ann Arbor

    Google Scholar 

  • Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical Report TR06, Erciyes University Press, Erciyes

  • Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214(1):108–132

    MathSciNet  MATH  Google Scholar 

  • Karaboga D, Gorkemli B, Ozturk C, Karaboga N (2014) A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif Intell Rev 42(1):21–57

    Article  Google Scholar 

  • Koza JR (1992) Genetic Programming: on the programming of computers by means of natural selection (complexadaptive systems). The MIT Press, Cambridge

    MATH  Google Scholar 

  • Krishnanand K, Ghose D (2005) Detection of multiple source locations using a glowworm metaphor with applications to collective robotics. In: Swarm intelligence symposium, 2005. SIS 2005. Proceedings 2005 IEEE. IEEE, pp 84–91

  • Kumar R, Sharma D, Sadu A (2011) A hybrid multi-agent based particle swarm optimization algorithm for economic power dispatch. Int J Electr Power Energy Syst 33(1):115–123

    Article  Google Scholar 

  • Li B, Li Y, Gong L (2014) Protein secondary structure optimization using an improved artificial bee colony algorithm based on AB off-lattice model. Eng Appl Artif Intell 27:70–79

    Article  Google Scholar 

  • Liang JJ, Suganthan PN (2005) Dynamic multi-swarm particle swarm optimizer with local search. In: The 2005 IEEE congress on, evolutionary computation (CEC’2005), vol 1. IEEE, pp 522–528

  • Liang J, Qu B, Suganthan P, Chen Q (2014) Problem definitions and evaluation criteria for the cec 2015 competition on learning-based real-parameter single objective optimization. Technical Report201411A, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore

  • Liang J, Guo L, Liu R, Qu B (2015) A self-adaptive dynamic particle swarm optimizer. In: 2015 IEEE congress on, evolutionary computation (CEC). IEEE, pp 3206–3213

  • Lin W-M, Gow H-J, Tsai M-T (2011) Combining of direct search and signal-to-noise ratio for economic dispatch optimization. Energy Convers Manag 52(1):487–493

    Article  Google Scholar 

  • Lohokare M, Panigrahi K, Pattnaik SS, Devi S, Mohapatra A (2012) Neighborhood search-driven accelerated biogeography-based optimization for optimal load dispatch. IEEE Trans Syst Man Cybern Part C Appl Rev 42(5):641–652

    Article  Google Scholar 

  • Lotfi N, Acan A (2016) A tournament-based competitive–cooperative multiagent architecture for real parameter optimization. Soft Comput 20(11):4597–4617

    Article  Google Scholar 

  • Lu H, Sriyanyong P, Song YH, Dillon T (2010) Experimental study of a new hybrid PSO with mutation for economic dispatch with non-smooth cost function. Int J Electr Power Energy Syst 32(9):921–935

    Article  Google Scholar 

  • Mansouri P, Asady B, Gupta N (2015) The bisection–artificial bee colony algorithm to solve fixed point problems. Appl Soft Comput 26:143–148

    Article  Google Scholar 

  • Meng K, Wang HG, Dong Z, Wong KP (2010) Quantum-inspired particle swarm optimization for valve-point economic load dispatch. IEEE Trans Power Syst 25(1):215–222

    Article  Google Scholar 

  • Mernik M, Liu S-H, Karaboga D, Črepinšek M (2015) On clarifying misconceptions when comparing variants of the artificial bee colony algorithm by offering a new implementation. Inf Sci 291:115–127

    Article  MathSciNet  MATH  Google Scholar 

  • Mohammadi-Ivatloo B, Rabiee A, Soroudi A, Ehsan M (2012) Iteration PSO with time varying acceleration coefficients for solving non-convex economic dispatch problems. Int J Electr Power Energy Syst 42(1):508–516

    Article  Google Scholar 

  • Molina D, Herrera F, Lozano M (2005) Adaptive local search parameters for real-coded memetic algorithms. In: The 2005 IEEE congress on, evolutionary computation (CEC’2005), vol 1. IEEE, pp 888–895

  • Moradi-Dalvand M, Mohammadi-Ivatloo B, Najafi A, Rabiee A (2012) Continuous quick group search optimizer for solving non-convex economic dispatch problems. Electr Power Syst Res 93:93–105

    Article  Google Scholar 

  • Niknam T, Mojarrad HD, Meymand HZ, Firouzi BB (2011) A new honey bee mating optimization algorithm for non-smooth economic dispatch. Energy 36(2):896–908

    Article  Google Scholar 

  • Pandi VR, Panigrahi BK, Mohapatra A, Mallick MK (2011) Economic load dispatch solution by improved harmony search with wavelet mutation. Int J Comput Sci Eng 6(1):122–131

    Google Scholar 

  • Poláková R, Tvrdík J, Bujok P (2015) Cooperation of optimization algorithms: a simple hierarchical model. In: 2015 IEEE congress on, evolutionary computation (CEC). IEEE, pp 1046–1052

  • Posik P (2005) Real-parameter optimization using the mutation step co-evolution. In: The 2005 IEEE congress on, evolutionary computation (CEC’2005), vol 1. IEEE, pp 872–879

  • Post G, Ahmadi S, Daskalaki S, Kingston JH, Kyngas J, Nurmi C, Ranson D (2012) An XML format for benchmarks in high school timetabling. Ann Oper Res 194(1):385–397

    Article  MATH  Google Scholar 

  • Post G, Di Gaspero L, Kingston JH, McCollum B, Schaerf A (2016) The third international timetabling competition. Ann Oper Res 239(1):69–75

    Article  MathSciNet  MATH  Google Scholar 

  • Pothiya S, Ngamroo I, Kongprawechnon W (2010) Ant colony optimisation for economic dispatch problem with non-smooth cost functions. Int J Electr Power Energy Syst 32(5):478–487

    Article  Google Scholar 

  • Qin AK, Suganthan PN (2005) Self-adaptive differential evolution algorithm for numerical optimization. In: The 2005 IEEE congress on, evolutionary computation (CEC’2005), vol 2. IEEE, pp 1785–1791

  • Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13(2):398–417

    Article  Google Scholar 

  • Rechenberg I (1965) Cybernetic solution path of an experimental problem. In: Royal Aircraft Establishment Translation No. 1122, B. F. Toms, Trans. Ministry of Aviation, Royal Aircraft Establishment, Farnborough Hants

  • Ronkkonen J, Kukkonen S, Price K V (2005) Real-parameter optimization with differential evolution. In: The 2005 IEEE congress on, evolutionary computation (CEC’2005), vol 1. IEEE, pp 506–513

  • Rueda JL, Erlich I (2015) Testing mvmo on learning-based real-parameter single objective benchmark optimization problems. In: 2015 IEEE congress on, evolutionary computation (CEC). IEEE, pp 1025–1032

  • Sallam KM, Sarker RA, Essam DL, Elsayed SM (2015) Neurodynamic differential evolution algorithm and solving CEC2015 competition problems. In: 2015 IEEE congress on, evolutionary computation (CEC). IEEE, pp 1033–1040

  • Sayah S, Hamouda A (2013) A hybrid differential evolution algorithm based on particle swarm optimization for nonconvex economic dispatch problems. Appl Soft Comput 13(4):1608–1619

    Article  Google Scholar 

  • Sinha N, Chakrabarti R, Chattopadhyay P (2003) Evolutionary programming techniques for economic load dispatch. IEEE Trans Evol Comput 7(1):83–94

    Article  Google Scholar 

  • Sinha A, Tiwari S, Deb K (2005) A population-based, steady-state procedure for real-parameter optimization. In: The 2005 IEEE congress on, evolutionary computation (CEC’2005), vol 1. IEEE, pp 514–521

  • Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  • Subbaraj P, Rengaraj R, Salivahanan S, Senthilkumar T (2010) Parallel particle swarm optimization with modified stochastic acceleration factors for solving large scale economic dispatch problem. Int J Electr Power Energy Syst 32(9):1014–1023

    Article  Google Scholar 

  • Subbaraj P, Rengaraj R, Salivahanan S (2011) Enhancement of self-adaptive real-coded genetic algorithm using Taguchi method for economic dispatch problem. Appl Soft Comput 11(1):83–92

    Article  Google Scholar 

  • Suganthan PN, Hansen N, Liang JJ, Deb K, Chen Y-P, Auger A, Tiwari S (2005) Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. KanGAL Report, 2005005

  • Tsai M-T, Gow H-J, Lin W-M (2011) A novel stochastic search method for the solution of economic dispatch problems with non-convex fuel cost functions. Int J Electr Power Energy Syst 33(4):1070–1076

    Article  Google Scholar 

  • Walters DC, Sheble GB (1993) Genetic algorithm solution of economic dispatch with valve point loading. IEEE Trans Power Syst 8(3):1325–1332

    Article  Google Scholar 

  • Wang L, Li L-P (2013) An effective differential harmony search algorithm for the solving non-convex economic load dispatch problems. Int J Electr Power Energy Syst 44(1):832–843

    Article  Google Scholar 

  • Wang Y, Cai Z, Zhang Q (2011) Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans Evol Comput 15(1):55–66

    Article  Google Scholar 

  • Xiang Y, Zhou Y (2015) A dynamic multi-colony artificial bee colony algorithm for multi-objective optimization. Appl Soft Comput 35:766–785

    Article  Google Scholar 

  • Xu Z, Unveren A, Acan A (2016) Probability collectives hybridised with differential evolution for global optimisation. Int J Bio-Inspired Comput 8(3):133–153

    Article  Google Scholar 

  • Yang X-S (2010) A new metaheuristic bat-inspired algorithm. In: Gonzlez J, Pelta D, Cruz C, Terrazas G, Krasnogor N (eds) Nature inspired cooperative strategies for optimization (NICSO 2010), vol 284 of studies in computational intelligence. Springer, Berlin, pp 65–74

  • Yang X-S, Deb S (2009) Cuckoo search via lévy flights. In: World congress on nature and biologically inspired computing, NaBIC 2009. IEEE, pp 210–214

  • Yu C, Kelley LC, Tan Y (2015) Dynamic search fireworks algorithm with covariance mutation for solving the CEC 2015 learning based competition problems. In 2015 IEEE congress on, evolutionary computation (CEC). IEEE, pp 1106–1112

  • Yuan B, Gallagher M (2005) Experimental results for the special session on real-parameter optimization at CEC 2005: a simple, continuous EDA. In: The 2005 IEEE congress on, evolutionary computation (CEC’2005), vol 2. IEEE, pp 1792–1799

  • Zhang S, Lee C, Choy K, Ho W, Ip W (2014) Design and development of a hybrid artificial bee colony algorithm for the environmental vehicle routing problem. Transp Res Part D Transp Environ 31:85–99

    Article  Google Scholar 

  • Zheng Y-J, Wu X-B (2015) Tuning maturity model of ecogeography-based optimization on CEC 2015 single-objective optimization test problems. In: 2015 IEEE congress on, evolutionary computation (CEC). IEEE, pp 1018–1024

  • Zhou J, Zhang X, Zhang G, Chen D (2015) Optimization and parameters estimation in ultrasonic echo problems using modified artificial bee colony algorithm. J Bionic Eng 12(1):160–169

    Article  Google Scholar 

  • Zhu G, Kwong S (2010) Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl Math Comput 217(7):3166–3173

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed A. Awadallah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awadallah, M.A., Al-Betar, M.A., Bolaji, A.L. et al. Natural selection methods for artificial bee colony with new versions of onlooker bee. Soft Comput 23, 6455–6494 (2019). https://doi.org/10.1007/s00500-018-3299-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-018-3299-2

Keywords

Navigation