Advertisement

A biased random key genetic algorithm for the protein–ligand docking problem

  • Pablo Felipe Leonhart
  • Eduardo Spieler
  • Rodrigo Ligabue-Braun
  • Marcio Dorn
Methodologies and Application
  • 173 Downloads

Abstract

Molecular docking is a valuable tool for drug discovery. Receptor and flexible Ligand docking is a very computationally expensive process due to a large number of degrees of freedom of the ligand and the roughness of the molecular binding search space. A molecular docking simulation starts with receptor and ligand unbound structures, and the algorithm tests hundreds of thousands of ligand conformations and orientations to find the best receptor–ligand binding affinity by assigning and optimizing an energy function. Although the advances in the conception of methods and computational strategies for searching the best protein–ligand binding affinity, the development of new strategies, the adaptation, and investigation of new approaches and the combination of existing and state-of-the-art computational methods and techniques to the molecular docking problem are needed. We developed a Biased Random Key Genetic Algorithm as a sampling strategy to search the protein–ligand conformational space. We use a different method to discretize the search space. The proposed method (namely, BRKGA-DOCK) has been tested on a selection of protein–ligand complexes and compared to existing tools AUTODOCK VINA, DOCKTHOR, and a multiobjective approach (jMETAL). Compared to other traditional docking software, the proposed method shows best average Root-Mean-Square Deviation. Structural results were also statistically analyzed. The proposed method proved to be efficient and a good alternative for the molecular docking problem.

Keywords

Molecular docking Optimization BRKGA Nature-inspired metaheuristics 

Notes

Acknowledgements

This study was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Grant Number 473692/2013-9 and 311022/2015-4); the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES); the Alexander von Humboldt-Foundation; and the Fundação de Amparo a Pesquisa do Estado do Rio Grande do Sul (FAPERGS) (grant PRONUPEQ). This Research was supported by Microsoft under a Microsoft Azure for Research Award. We thank Dr. Mathias Krause (KIT, Germany) for helpful discussions.

Compliance with Ethical Standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Human participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

500_2018_3065_MOESM1_ESM.pdf (64 kb)
Supplementary material 1 (pdf 63 KB)

References

  1. Abdi H (2007) Bonferroni and sidak corrections for multiple comparisons. In: Salkind NJ (ed) Encyclopedia of measurement and statistics. Sage, Thousand Oaks, pp 103–107Google Scholar
  2. Atilgan E, Hu J (2010) Efficient protein-ligand docking using sustainable evolutionary algorithms. In: 2010 10th international conference on hybrid intelligent systems (HIS), pp 113–118Google Scholar
  3. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol) 57(1):289–300MathSciNetMATHGoogle Scholar
  4. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242CrossRefGoogle Scholar
  5. Blum C, Roli A (2003) Metaheuristics in combinatorial optimization: overview and conceptual comparison. Comput Surv 35:268–308CrossRefGoogle Scholar
  6. Blum C, Puchinger J, Raidl Gunther R, Andrea R (2011) Hybrid metaheuristics in combinatorial optimization: a survey. Appl Soft Comput 11(6):4135–4151CrossRefMATHGoogle Scholar
  7. Boussaïd I, Lepagnot J, Siarry P (2013) A survey on optimization metaheuristics. Inf Sci 237:82–117MathSciNetCrossRefMATHGoogle Scholar
  8. Brooijmans N, Kuntz ID (2003) Molecular recognition and docking algorithms. Annu Rev Biophys Biomol Struct 32(1):335–373CrossRefGoogle Scholar
  9. Chen H, Liu B, Huang H, Hwang S, Ho S (2007) Sodock: swarm optimization for highly flexible protein-ligand docking. J Comput Chem 28(2):612–623CrossRefGoogle Scholar
  10. Cheng T, Li Q, Zhou Z, Wang Y, Bryant SH (2012) Structure-based virtual screening for drug discovery: a problem-centric review. AAPS J 14(1):133–141CrossRefGoogle Scholar
  11. de Magalhaes CS, Barbosa HJC, Dardenne LE (2004) A genetic algorithm for the ligand-protein docking problem. Genet Mol Biol 27:605–610CrossRefGoogle Scholar
  12. de Magalhães CS, Almeida DM, Barbosa HJC, Dardenne LE (2014) A dynamic niching genetic algorithm strategy for docking highly flexible ligands. Inf Sci 289:206–224CrossRefGoogle Scholar
  13. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197CrossRefGoogle Scholar
  14. Devi RV, Sathya SS, Coumar MS (2015) Evolutionary algorithms for de novo drug design a survey. Appl Soft Comput 27:543–552CrossRefGoogle Scholar
  15. Durillo JJ, Nebro AJ (2011) jMETAL: a Java framework for multi-objective optimization. Adv Eng Softw 42:760–771CrossRefGoogle Scholar
  16. Elokely KM, Doerksen RJ (2013) Docking challenge: Protein sampling and molecular docking performance. J Chem Inf Model 53(8):1934–1945CrossRefGoogle Scholar
  17. Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 32(200):675–701CrossRefMATHGoogle Scholar
  18. Fu Y, Wu X, Chen Z, Sun J, Zhao J, Xu W (2015) A new approach for flexible molecular docking based on swarm intelligence. Math Probl Eng 2015.  https://doi.org/10.1155/2015/540186
  19. Garcia-Godoy MJ, Lopez-Camacho E, Garcia-Nieto J, Nebro AJ, Aldana-Montes JF (2015) Solving molecular docking problems with multi-objective metaheuristics. Molecules 20(6):10154CrossRefGoogle Scholar
  20. Goncalves JF, Resende MGC (2011) Biased random-key genetic algorithms for combinatorial optimization. J Heuristics 5:487–525CrossRefGoogle Scholar
  21. Goulart N, Souza SR, Dias LGS, Noronha TF (2011) Biased random-key genetic algorithm for fiber installation in optical network optimization. In: 2011 IEEE CEC, pp 2267–2271Google Scholar
  22. Heberlé G, de Azevedo W (2011) Bio-inspired algorithms applied to molecular docking simulations. Curr Med Chem 18(9):1339–1352CrossRefGoogle Scholar
  23. Hochberg Y (1988) A sharper bonferroni procedure for multiple tests of significance. Biometrika 75(4):800–802MathSciNetCrossRefMATHGoogle Scholar
  24. Hommel G (1988) A stagewise rejective multiple test procedure based on a modified bonferroni test. Biometrika 75(2):383–386CrossRefMATHGoogle Scholar
  25. Huang S, Zou X (2010) Advances and challenges in protein-ligand docking. Int J Mol Sci 11(8):3016CrossRefGoogle Scholar
  26. Janson S, Merkle D, Middendorf M (2008) Molecular docking with multi-objective particle swarm optimization. Appl Soft Comput 8(1):666–675CrossRefGoogle Scholar
  27. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking1. J Mol Biol 267(3):727–748CrossRefGoogle Scholar
  28. Kang L, Wang X (2012) Multi-scale optimization model and algorithm for computer-aided molecular docking. In: 2012 eighth international conference on natural computation (ICNC), pp 1208–1211Google Scholar
  29. Kitchen DB, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3(2):935–949CrossRefGoogle Scholar
  30. Kozakov D, Clodfelter KH, Vajda S, Camacho CJ (2005) Optimal clustering for detecting near-native conformations in protein docking. Biophys J 89(2):867–875CrossRefGoogle Scholar
  31. Kukkonen S, Lampinen J (2005) GDE3: The third evolution step of generalized differential evolution. In: IEEE congress on evolutionary computation, pp 443–450Google Scholar
  32. Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE (1982) A geometric approach to macromolecule-ligand interactions. J Mol Biol 161(2):269–288CrossRefGoogle Scholar
  33. Lengauer T, Rarey M (1996) Computational methods for biomolecular docking. Curr Opin Struct Biol 6(3):402–406CrossRefGoogle Scholar
  34. Lopez-Camacho E, Godoy MJG, Nebro AJ, Aldana-Montes JF (2013) jMetalCpp: optimizing molecular docking problems with a C++ metaheuristic framework. Bioinformatics 30(3):437–438. https://doi.org/10.1093/bioinformatics/btt679
  35. Lopez-Camacho E, Godoy MJG, Garcia-Nieto J, Nebro AJ, Aldana-Montes JF (2015) Solving molecular flexible docking problems with metaheuristics: a comparative study. Appl Soft Comput 28:379–393CrossRefGoogle Scholar
  36. Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Statist 18(1):50–60MathSciNetCrossRefMATHGoogle Scholar
  37. Marchiori E, Moore JH, Rajapakse JC (2007) Evolutionary computation, machine learning and data mining in bioinformatics. In: Proceedings 5th European conference, EvoBIO 2007, Valencia, Spain, April 11–13, 2007, vol 4447Google Scholar
  38. Meier MR, Pippel FB, Sippl W, Baldauf C (2010) Paradocks: a framework for molecular docking with population-based metaheuristics. J Chem Inf Model 50(5):879–889CrossRefGoogle Scholar
  39. Meng XY, Zhang HX, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7(2):146–157CrossRefGoogle Scholar
  40. Morris GM, Lindstrom W, Sanner MF, Belew RK, Huey R, Olson AJ, Goodsell SD (2009) Autodock4 and autodocktools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791CrossRefGoogle Scholar
  41. Morris GM, Goodsell DS, Pique ME, Lindstrom W, Huey R, Forli S, Hart WE, Halliday S, Belew R, Olson AJ (2011) Autodock 4.2 user guide: automated docking of flexible ligands to flexible receptors. The scripps research institute. http://autodock.scripps.edu/faqs-help/manual/autodock-4-2-user-guide. Accessed Jan 2018
  42. Mucherino A, Seref O (2009) Modeling and solving real life global optimization problems with meta-heuristic methods. Adv Mod Agric Syst 25:1CrossRefGoogle Scholar
  43. Nebro AJ, Durillo JJ, García-Nieto J, Coello CA, Luna F, Alba E (2009) Smpso: a new pso-based metaheuristic for multi-objective optimization. In: 2009 IEEE symposium on computational intelligence in multicriteria decision-making, pp 66–73Google Scholar
  44. Noronha TF, Resende MG, Ribeiro CC (2011) Biased random-key genetic algorithm for routing and wavelength assignment. J Glob Optim 50(3):503–518CrossRefGoogle Scholar
  45. Peter N (1963) Distribution-free multiple comparisons. Princeton University, PrincetonGoogle Scholar
  46. Prasetyo H, Amer Y, Fauza G, Lee SH (2015) Survey on applications of biased-random key genetic algorithms for solving optimization problems. In: Ind. Eng. and Eng. Manag. (IEEM), pp 863–870Google Scholar
  47. Resende MGC (2012) Biased random-key genetic algorithms with applications in telecommunications. TOP 20(1):130–153MathSciNetCrossRefMATHGoogle Scholar
  48. Schneider G, Bhm HJ (2002) Virtual screening and fast automated docking methods. Drug Discov Today 7(1):64–70CrossRefGoogle Scholar
  49. Schrödinger LLC (2015) The PyMOL molecular graphics system, version 1.8. Schrödinger LLC, New YorkGoogle Scholar
  50. Silva RMA, Resende MGC, Pardalos PM, Fac JL (2013) Biased random-key genetic algorithm for nonlinearly-constrained global optimization. In: 2013 IEEE CEC, pp 2201–2206Google Scholar
  51. Sousa SF, Ribeiro AJM, Coimbra JTS, Neves RPP, Martins SA, Moorthy NSHN, Fernandes PA, Ramos MJ (2013) Protein-ligand docking in the new millennium a retrospective of 10 years in the field. Curr Med Chem 20(18):2296–2314CrossRefGoogle Scholar
  52. Sture H (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6(2):65–70MathSciNetMATHGoogle Scholar
  53. Talbi E-G (2009) Metaheuristics: from design to implementation, vol 74. Wiley, HobokenCrossRefMATHGoogle Scholar
  54. Thomsen R (2003) Flexible ligand docking using evolutionary algorithms: investigating the effects of variation operators and local search hybrids. Biosystems 72(1):57–73CrossRefGoogle Scholar
  55. Trott O, Olson AJ (2010) Autodock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461Google Scholar
  56. Wang R, Lu Y, Wang S (2003) Comparative evaluation of 11 scoring functions for molecular docking. J Med Chem 46(12):2287–2303CrossRefGoogle Scholar
  57. Wilcoxon F (1992) Individual comparisons by ranking methods. Springer, New York, pp 196–202Google Scholar
  58. Yang X-S (2010) Nature-inspired metaheuristic algorithms. Luniver Press, BeckingtonGoogle Scholar
  59. Yang X-S (2011) Review of meta-heuristics and generalised evolutionary walk algorithm. Int J Bio-Insp Comput 3(2):77–84CrossRefGoogle Scholar
  60. Yoav B, Daniel Y (2001) The control of the false discovery rate in multiple testing under dependency. Ann Statist 29(4):1165–1188MathSciNetCrossRefMATHGoogle Scholar
  61. Yuriev E, Ramsland PA (2013) Latest developments in molecular docking: 2010–2011 in review. J Mol Recognit 26(5):215–239CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of InformaticsFederal University of Rio Grande do SulPorto AlegreBrazil
  2. 2.Center of BiotechnologyFederal University of Rio Grande do SulPorto AlegreBrazil

Personalised recommendations