Soft Computing

, Volume 22, Issue 9, pp 2797–2807 | Cite as

The logic of distributive nearlattices



In this paper, we propose a sentential logic naturally associated, in the sense of Abstract Algebraic Logic, with the variety of distributive nearlattices. We show that the class of algebras canonically associated (in the sense of Abstract Algebraic Logic) with this logic is the variety of distributive nearlattices. We also present several properties of this sentential logic.


Distributive nearlattices Sentential logic Gentzen system 



I greatly appreciate the comments and suggestions of the referees that helped to improve the paper. This paper was partially supported by Universidad Nacional de La Pampa (Fac. de Cs. Exactas y Naturales) under the Grant P.I. 64 M, Res. No. 432/14 CD and also by CONICET (Argentina) under the Grant PIP 112-20150-100412CO.

Compliance with ethical standards

Conflict of interest

The author declares that there is no conflict of interests regarding the publishing of this paper.


  1. Abbott JC (1967) Semi-boolean algebra. Matematički Vesnik 4(40):177–198MathSciNetMATHGoogle Scholar
  2. Abbott JC (1976) Orthoimplication algebras. Stud Logica 35(2):173–177MathSciNetCrossRefMATHGoogle Scholar
  3. Araújo J, Kinyon M (2011) Independent axiom systems for nearlattices. Czech Math J 61(4):975–992MathSciNetCrossRefMATHGoogle Scholar
  4. Blok WJ, Pigozzi D (1989) Algebraizable logics. 396. Memoirs of the American Mathematical SocietyGoogle Scholar
  5. Calomino I (2015) Supremo álgebra distributivas: una generalización de las álgebras de tarski. Ph.D. thesis, Universidad Nacional del SurGoogle Scholar
  6. Celani S, Calomino I (2014) Stone style duality for distributive nearlattices. Algebra Universalis 71(2):127–153MathSciNetCrossRefMATHGoogle Scholar
  7. Celani S, Calomino I (2016) On homomorphic images and the free distributive lattice extension of a distributive nearlattice. Rep Math Log 51:57–73MathSciNetMATHGoogle Scholar
  8. Chajda I, Halaš R (2005) An implication in orthologic. Int J Theoret Phys 44(7):735–744MathSciNetCrossRefMATHGoogle Scholar
  9. Chajda I, Halaš R, Kühr J (2007) Semilattice structures, vol 30. Heldermann, LemgoMATHGoogle Scholar
  10. Chajda I, Halas R, Länger H (2001) Orthomodular implication algebras. Int J Theoret Phys 40(11):1875–1884MathSciNetCrossRefMATHGoogle Scholar
  11. Chajda I, Kolařík M (2008) Nearlattices. Discrete Math 308(21):4906–4913MathSciNetCrossRefMATHGoogle Scholar
  12. Cornish W, Hickman RC (1978) Weakly distributive semilattices. Acta Mathematica Hungarica 32(1):5–16MathSciNetCrossRefMATHGoogle Scholar
  13. Czelakowski J (2001) Protoalgebraic logics. Kluwer Academic Publishers, DordrechtCrossRefMATHGoogle Scholar
  14. Davey BA, Priestley HA (2002) Introduction to lattices and order. Cambridge University Press, CambridgeCrossRefMATHGoogle Scholar
  15. Font JM, Jansana R (2009) A general algebraic semantics for sentential logics, Lecture Notes in Logic, vol. 7, 2 edn. The Association for Symbolic LogicGoogle Scholar
  16. Font JM, Jansana R, Pigozzi D (2003) A survey of abstract algebraic logic. Stud Logica 74(1–2):13–97MathSciNetCrossRefMATHGoogle Scholar
  17. Font JM, Verdú V (1991) Algebraic logic for classical conjunction and disjunction. Stud Logica 50(3–4):391–419MathSciNetCrossRefMATHGoogle Scholar
  18. Hickman R (1980) Join algebras. Commun Algebra 8(17):1653–1685MathSciNetCrossRefMATHGoogle Scholar
  19. Monteiro A (1980) Sur les algèbres de heyting symétriques. Portugaliae Mathematica 39(1–4):1–237MathSciNetMATHGoogle Scholar
  20. Rebagliato J, Verdú V (1993) On the algebraization of some gentzen systems. Fundam Inform 18:319–338MathSciNetMATHGoogle Scholar
  21. Rebagliato J, Verdú V (1995) Algebraizable gentzen systems and the deduction theorem for gentzen systems. Mathematics Preprint Series 175Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Fac. de Cs. Exactas y NaturalesUniversidad Nacional de La PampaSanta RosaArgentina

Personalised recommendations