Skip to main content
Log in

Linear port-Hamiltonian descriptor systems

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

The modeling framework of port-Hamiltonian systems is systematically extended to linear constrained dynamical systems (descriptor systems, differential-algebraic equations) of arbitrary index and with time-varying constraints. A new algebraically and geometrically defined system structure is derived. It is shown that this structure is invariant under equivalence transformations, and that it is adequate also for the modeling of high-index descriptor systems. The regularization procedure for descriptor systems to make them suitable for simulation and control is modified to preserve the port-Hamiltonian form. The relevance of the new structure is demonstrated with several examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bals J, Hofer G, Pfeiffer A, Schallert C (2005) Virtual iron bird—a multidisciplinary modelling and simulation platform for new aircraft system architectures. In: Deutscher Luft-und Raumfahrtkongress, Friedrichshafen, Germany

  2. Beattie C, Gugercin S (2011) Structure-preserving model reduction for nonlinear port-Hamiltonian systems. In: 50th IEEE conference on decision and control and European control conference (CDC-ECC), 2011. IEEE, pp 6564–6569

  3. Binder A, Mehrmann V, Miedlar A, Schulze P (2015) A Matlab toolbox for the regularization of descriptor systems arising from generalized realization procedures. Preprint 24–2015, Institut für Mathematik, TU Berlin

  4. Breedveld PC (2008) Modeling and simulation of dynamic systems using bond graphs. EOLSS Publishers Co. Ltd./UNESCO, Oxford, pp 128–173

    Google Scholar 

  5. Brenan KE, Campbell SL, Petzold LR (1996) Numerical solution of initial-value problems in differential algebraic equations, 2nd edn. SIAM Publications, Philadelphia

    MATH  Google Scholar 

  6. Bunse-Gerstner A, Byers R, Mehrmann V, Nichols NK (1999) Feedback design for regularizing descriptor systems. Linear Algebra Appl 299:119–151

    Article  MathSciNet  Google Scholar 

  7. Byers R, Kunkel P, Mehrmann V (1997) Regularization of linear descriptor systems with variable coefficients. SIAM J Control Optim 35(1):117–133

    Article  MathSciNet  Google Scholar 

  8. Byrnes CI, Isidori A, Willems JC (1991) Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems. IEEE Trans Autom Control 36:1228–1240

    Article  MathSciNet  Google Scholar 

  9. Campbell SL (1987) A general form for solvable linear time varying singular systems of differential equations. SIAM J Math Anal 18:1101–1115

    Article  MathSciNet  Google Scholar 

  10. Campbell SL (1995) Linearization of DAEs along trajectories. Z Angew Math Phys 46:70–84

    Article  MathSciNet  Google Scholar 

  11. Campbell SL, Kunkel P, Mehrmann V (2012) Regularization of linear and nonlinear descriptor systems. In: Biegler LT, Campbell SL, Mehrmann V (eds) Control and optimization with differential-algebraic constraints, advances in control and design, chapter 2. SIAM Publications, Philadelphia, pp 17–36

    MATH  Google Scholar 

  12. Couenne F, Jallut C, Maschke BM, Tayakout M, Breedveld PC (2008) Bond graph for dynamic modelling in chemical engineering. Chem Eng Process 47:1994–2003

    Article  Google Scholar 

  13. Dai L (1989) Singular control systems, volume 118 of Lecture Notes in Control and Inform. Sci. Springer-Verlag, Berlin/Heidelberg

  14. Dirac PAM (1950) Generalized Hamiltonian dynamics. Can J Math 2:129–148

    Article  MathSciNet  Google Scholar 

  15. Egger H, Kugler T (2018) Damped wave systems on networks: exponential stability and uniform approximations. Numer Math 138(4):839–867

    Article  MathSciNet  Google Scholar 

  16. Egger H, Kugler T, Liljegren-Sailer B, Marheineke N, Mehrmann V (2018) On structure preserving model reduction for damped wave propagation in transport networks. SIAM J Sci Comput 40:A331–A365

    Article  MathSciNet  Google Scholar 

  17. Eich-Soellner E, Führer C (1998) Numerical methods in multibody dynamics. Teubner, Stuttgart

    Book  Google Scholar 

  18. Freund RW (2011) The SPRIM algorithm for structure-preserving order reduction of general RLC circuits. In: Model reduction for circuit simulation. Springer, pp 25–52

  19. Fujimoto K, Sugie T (2001) Canonical transformation and stabilization of generalized Hamiltonian systems. Syst Control Lett 42(3):217–227

    Article  MathSciNet  Google Scholar 

  20. Gillis N, Mehrmann V, Sharma P (2018) Computing the nearest stable matrix pairs. Numer Linear Algebra Appl 25:e2153

    Article  MathSciNet  Google Scholar 

  21. Golo G, van der Schaft AJ, Breedveld PC, Maschke BM (2003) Hamiltonian formulation of bond graphs. In: Rantzer A, Johansson R (eds) Nonlinear and hybrid systems in automotive control. Springer, Heidelberg, pp 351–372

    Google Scholar 

  22. Gugercin S, Polyuga RV, Beattie C, van der Schaft AJ (2012) Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems. Automatica 48:1963–1974

    Article  MathSciNet  Google Scholar 

  23. Hiller M, Hirsch K (2006) Multibody system dynamics and mechatronics. Z Angew Math Mech 86(2):87–109

    Article  MathSciNet  Google Scholar 

  24. Hinrichsen D, Pritchard AJ (2005) Mathematical system theory I. Modelling, state space analysis, stability and robustness. Springer, New York

    MATH  Google Scholar 

  25. Hou M (1994) A three-link planar manipulator model. Sicherheitstechnische Regelungs- und Meßtechnik. Bergische Universität-GH Wuppertal, Wuppertal

  26. Hou M, Müller PC (1994) \(LQ\) and tracking control of descriptor systems with application to constrained manipulator. Technical report, Sicherheitstechnische Regelungs- und Meßtechnik, Universität Wuppertal, Gauß-Straße, Wuppertal 1, Germany

  27. Jacob B, Zwart H (2012) Linear port-Hamiltonian systems on infinite-dimensional spaces. Operator theory: advances and applications, vol 223. Springer, Berlin

    Book  Google Scholar 

  28. Kleijn C (2013)20-sim 4C 2.1 Reference manual. Controlab Products B.V

  29. Kunkel P, Mehrmann V (2001) Analysis of over-and underdetermined nonlinear differential-algebraic systems with application to nonlinear control problems. Math Control Signals Syst 14:233–256

    Article  MathSciNet  Google Scholar 

  30. Kunkel P, Mehrmann V (2006) Differential-algebraic equations. Analysis and numerical solution. EMS Publishing House, Zürich

    Book  Google Scholar 

  31. Kunkel P, Mehrmann V, Rath W (2001) Analysis and numerical solution of control problems in descriptor form. Math Control Signals Syst 14:29–61

    Article  MathSciNet  Google Scholar 

  32. Kunkel P, Mehrmann V, Scholz L (2014) Self-adjoint differential-algebraic equations. Math Control Signals Syst 26:47–76

    Article  MathSciNet  Google Scholar 

  33. Lamour R, März R, Tischendorf C (2013) Differential-algebraic equations: a projector based analysis. Springer, Berlin

    Book  Google Scholar 

  34. Maschke BM, van der Schaft AJ, Breedveld PC (1992) An intrinsic Hamiltonian formulation of network dynamics: non-standard Poisson structures and gyrators. J Frankl Inst 329:923–966

    Article  Google Scholar 

  35. Mehl C, Mehrmann V, Wojtylak M (2018) Linear algebra properties of dissipative Hamiltonian descriptor systems. SIAM J Matrix Anal Appl. To appear

  36. Mehrmann V, Schröder C (2011) Nonlinear eigenvalue and frequency response problems in industrial practice. J Math Ind 1:18

    MathSciNet  MATH  Google Scholar 

  37. Ortega R, van der Schaft AJ, Mareels Y, Maschke BM (2001) Putting energy back in control. Control Syst Mag 21:18–33

    Article  Google Scholar 

  38. Polderman JW, Willems JC (1998) Introduction to mathematical systems theory: a behavioural approach. Springer, New York

    Book  Google Scholar 

  39. Polyuga RV, van der Schaft AJ (2010) Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity. Automatica 46:665–672

    Article  MathSciNet  Google Scholar 

  40. Schiehlen W (1993) Advanced multibody system dynamics. Kluwer Academic Publishers, Stuttgart

    Book  Google Scholar 

  41. Schlacher K, Kugi A (2001) Automatic control of mechatronic systems. Int J Appl Math Comput Sci 11(1):131–164

    MathSciNet  MATH  Google Scholar 

  42. Scholz L (2017) Condensed forms for linear port-Hamiltonian descriptor systems. Preprint 09–2017. Institut für Mathematik, TU Berlin

  43. Trautenberg W Simpack 8.9. Manual, INTEC GmbH, Angelrieder Feld 13, 82234 Wessling

  44. van der Schaft AJ (2004) Port-Hamiltonian systems: network modeling and control of nonlinear physical systems. In: Advanced dynamics and control of structures and machines, CISM courses and lectures, Vol. 444. Springer, New York, NY

  45. van der Schaft AJ (2006) Port-Hamiltonian systems: an introductory survey. In: Verona JL, Sanz-Sole M, Verdura J (eds) Proceedings of the international congress of mathematicians, vol. III, invited lectures, Madrid, Spain, pp 1339–1365

  46. van der Schaft AJ (2013) Port-Hamiltonian differential-algebraic systems. In: Surveys in differential-algebraic equations I. Springer, pp 173–226

  47. van der Schaft AJ, Maschke BM (2002) Hamiltonian formulation of distributed-parameter systems with boundary energy flow. J Geom Phys 42:166–194

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We acknowledge many interesting discussions with Robert Altmann and Philipp Schulze from TU Berlin and Arjan Van der Schaft from RU Groningen. We also thank two anonymous reviewers for helpful comments to improve the presentation. The first author has been supported by Einstein Foundation Berlin, through an Einstein Visiting Fellowship. The second author has been supported by Deutsche Forschungsgemeinschaft for Research support via Project A02 in CRC 1029 TurbIn, and project B03 in CRC-TR154 as well as by Einstein Foundation Berlin within the Einstein Center ECMath.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Mehrmann.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Christopher Beattie: Supported by Einstein Foundation Berlin, through an Einstein Visiting Fellowship. Volker Mehrmann: Supported by Einstein Foundation Berlin via the Einstein Center ECMath and by Deutsche Forschungsgemeinschaft via Project A02 within CRC 1029 ’TurbIn’. Hongguo Xu : Partially supported by Alexander von Humboldt Foundation and by Deutsche Forschungsgemeinschaft, through the DFG Research Center Matheon Mathematics for Key Technologies in Berlin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beattie, C., Mehrmann, V., Xu, H. et al. Linear port-Hamiltonian descriptor systems. Math. Control Signals Syst. 30, 17 (2018). https://doi.org/10.1007/s00498-018-0223-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00498-018-0223-3

Keywords

Mathematics Subject Classification

Navigation