Skip to main content
Log in

Stabilization to trajectories for parabolic equations

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

Both internal and boundary feedback exponential stabilization to trajectories for semilinear parabolic equations in a given bounded domain are addressed. The values of the controls are linear combinations of a finite number of actuators which are supported in a small region. A condition on the family of actuators is given which guarantees the local stabilizability of the control system. It is shown that a linearization-based Riccati feedback stabilizing controller can be constructed. The results of numerical simulations are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ammar-Khodja F, Benabdallah A, González-Burgos M, de Teresa L (2011) Recent results on the controllability of linear coupled parabolic problems: a survey. Math Control Relat Fields 1(3):267–306. https://doi.org/10.3934/mcrf.2011.1.267

    Article  MathSciNet  MATH  Google Scholar 

  2. Ammar-Khodja F, Benabdallah A, González-Burgos M, de Teresa L (2016) New phenomena for the null controllability of parabolic systems: Minimal time and geometrical dependence. J Math Anal Appl 444(2):1071–1113. https://doi.org/10.1016/j.jmaa.2016.06.058

    Article  MathSciNet  MATH  Google Scholar 

  3. Auchmuty G, Alexander JC (2001) \({L}^2\)-well-posedness of planar div-curl systems. Arch Ration Mech Anal 160(2):91–134. https://doi.org/10.1007/s002050100156

    Article  MathSciNet  MATH  Google Scholar 

  4. Auchmuty G, Alexander JC (2005) \({L}^2\)-well-posedness of 3D div-curl boundary value problems. Quart Appl Math 63(3):479–508. https://doi.org/10.1090/S0033-569X-05-00972-5

    Article  MathSciNet  Google Scholar 

  5. Badra M (2009) Feedback stabilization of the 2-D and 3-D Navier-Stokes equations based on an extended system. ESAIM Control Optim Calc Var 15(4):934–968. https://doi.org/10.1051/cocv:2008059

    Article  MathSciNet  MATH  Google Scholar 

  6. Badra M, Ervedoza S, Guerrero S (2016) Local controllability to trajectories for non-homogeneous incompressible Navier–Stokes equations. Ann Inst H. Poincaré Anal Non Linaire 33(2):529–574. https://doi.org/10.1016/j.anihpc.2014.11.006

    Article  MathSciNet  MATH  Google Scholar 

  7. Badra M, Takahashi T (2011) Stabilization of parabolic nonlinear systems with finite dimensional feedback or dynamical controllers: application to the Navier–Stokes system. SIAM J Control Optim 49(2):420–463. https://doi.org/10.1137/090778146

    Article  MathSciNet  MATH  Google Scholar 

  8. Balogh A, Liu WJ, Krstic M (2001) Stability enhancement by boundary control in 2-D channel flow. IEEE Trans Autom Control 46(11):1696–1711. https://doi.org/10.1109/9.964681

    Article  MathSciNet  MATH  Google Scholar 

  9. Barbu V (2012) Stabilization of Navier–Stokes equations by oblique boundary feedback controllers. SIAM J Control Optim 50(4):2288–2307. https://doi.org/10.1137/110837164

    Article  MathSciNet  MATH  Google Scholar 

  10. Barbu V (2013) Boundary stabilization of equilibrium solutions to parabolic equations. IEEE Trans Autom Control 58(9):2416–2420. https://doi.org/10.1109/TAC.2013.2254013

    Article  MathSciNet  MATH  Google Scholar 

  11. Barbu V, Lasiecka I (2012) The unique continuations property of eigenfunctions to Stokes–Oseen operator is generic with respect to the coefficients. Nonlinear Anal 75(12):4384–4397. https://doi.org/10.1016/j.na.2011.07.056

    Article  MathSciNet  MATH  Google Scholar 

  12. Barbu V, Lasiecka I, Triggiani R (2006) Abstract settings for tangential boundary stabilization of Navier–Stokes equations by high- and low-gain feedback controllers. Nonlinear Anal 64:2704–2746. https://doi.org/10.1016/j.na.2005.09.012

    Article  MathSciNet  MATH  Google Scholar 

  13. Barbu V, Rodrigues SS, Shirikyan A (2011) Internal exponential stabilization to a nonstationary solution for 3D Navier–Stokes equations. SIAM J Control Optim 49(4):1454–1478. https://doi.org/10.1137/100785739

    Article  MathSciNet  MATH  Google Scholar 

  14. Bedivan DM, Fix GJ (1996) An extension theorem for the space \({H}_{\rm div}\). Appl Math Left 9(5):17–20. https://doi.org/10.1016/0893-9659(96)00066-3

    MATH  Google Scholar 

  15. Benner P (2006) Morlab-1.0 package software. http://www.mpi-magdeburg.mpg.de/projects/morlab. Accessed 12 July 2018

  16. Benner P (2006) A matlab repository for model reduction based on spectral projection. In: Proceedings of the 2006 IEEE conference on computer aided control systems design, pp 19–24. https://doi.org/10.1109/CACSD-CCA-ISIC.2006.4776618

  17. Breiten T, Kunisch K, Rodrigues SS (2017) Feedback stabilization to nonstationary solutions of a class of reaction diffusion equations of FitzHugh–Nagumo type. SIAM J Control Optim 55(4):2684–2713. https://doi.org/10.1137/15M1038165

    Article  MathSciNet  MATH  Google Scholar 

  18. Buchot JM, Raymond JP, Tiago J (2015) Coupling estimation and control for a two dimensional Burgers type equation. ESAIM Control Optim Calc Var 21(2):535–560. https://doi.org/10.1051/cocv/2014037

    Article  MathSciNet  MATH  Google Scholar 

  19. Curtain R, Pritchard AJ (1976) The infinite-dimensional Riccati equation for systems defined by evolution operators. SIAM J Control Optim 14(5):951–983. https://doi.org/10.1137/0314061

    Article  MathSciNet  MATH  Google Scholar 

  20. Da Prato G, Ichikawa A (1990) Uniform asymptotic stability of evolutionary processes in a Banach space. SIAM J Control Optim 28(2):359–381. https://doi.org/10.1137/0328019

    Article  MathSciNet  Google Scholar 

  21. Duyckaerts T, Zhang X, Zuazua E (2008) On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials. Ann Inst. H Poincaré Anal. Non Linéaire 25(1):1–41. https://doi.org/10.1016/j.anihpc.2006.07.005

    Article  MathSciNet  MATH  Google Scholar 

  22. Fisher RA (1937) The wave of advance of advantageous genes. Ann Hum. Genet. 7(4):355–369. https://doi.org/10.1111/j.1469-1809.1937.tb02153.x

    MATH  Google Scholar 

  23. Fursikov AV (2001) Stabilizability of two-dimensional Navier–Stokes equations with help of a boundary feedback control. J Math Fluid Mech 3(3):259–301. https://doi.org/10.1007/PL00000972

    Article  MathSciNet  MATH  Google Scholar 

  24. Fursikov AV (2004) Stabilization for the 3D Navier–Stokes system by feedback boundary control. Discrete Contin Dyn Syst 10(1–2):289–314. https://doi.org/10.3934/dcds.2004.10.289

    MathSciNet  MATH  Google Scholar 

  25. Fursikov AV, Gunzburger MD, Hou LS (2002) Trace theorems for three-dimensional, time-dependent solenoidal vector fields and their applications. Trans Am. Math Soc 354(3):1079–1116. https://doi.org/10.1090/S0002-9947-01-02865-3

    Article  MathSciNet  MATH  Google Scholar 

  26. Fursikov AV, Imanuvilov OY (1996) Controllability of evolution equations, Lecture Notes Series, vol 34. Seoul National University Research Institute of Mathematics Global Analysis Research Center, Seoul

  27. Fursikov AV, Imanuvilov OY (1996) Exact local controllability of two-dimensional Navier–Stokes equations. Sb Math 187(9):1355–1390. https://doi.org/10.1070/SM1996v187n09ABEH000160

    Article  MathSciNet  MATH  Google Scholar 

  28. González-Burgos M, Guerrero S, Puel JP (2009) Local exact controllability to the trajectories of the Boussinesq system via a fictitious control on the divergence equation. Commun Pure Appl Anal 8(1):311–333. https://doi.org/10.3934/cpaa.2009.8.311

    MathSciNet  MATH  Google Scholar 

  29. Kröner A, Rodrigues SS (2015) Internal exponential stabilization to a nonstationary solution for 1D Burgers equations with piecewise constant controls. In: Proceedings of the 2015 European control conference (ECC), Linz, Austria, pp 2676–2681. https://doi.org/10.1109/ECC.2015.7330942

  30. Kröner A, Rodrigues SS (2015) Remarks on the internal exponential stabilization to a nonstationary solution for 1D Burgers equations. SIAM J Control Optim 53(2):1020–1055. https://doi.org/10.1137/140958979

    Article  MathSciNet  MATH  Google Scholar 

  31. Li P, Yau ST (1983) On the Schrödinger equation and the eigenvalue problem. Commun Math Phys 88(3):309–318. https://doi.org/10.1007/BF01213210

    Article  MATH  Google Scholar 

  32. Lions JL, Magenes E (1972) Non-homogeneous boundary value problems and applications. Die Grundlehren Math. Wiss. Einzeldarstellungen, vol. I. Springer. https://doi.org/10.1007/978-3-642-65161-8

  33. Lions JL, Magenes E (1972) Non-homogeneous boundary value problems and applications. Die Grundlehren Math. Wiss. Einzeldarstellungen, vol. II. Springer. https://doi.org/10.1007/978-3-642-65217-2

  34. Munteanu I (2012) Normal feedback stabilization of periodic flows in a three-dimensional channel. Numer. Funct. Anal. Optim. 33(6):611–637. https://doi.org/10.1080/01630563.2012.662198

    Article  MathSciNet  MATH  Google Scholar 

  35. Phan D, Rodrigues SS (2016) Stabilization to trajectories for parabolic equations. arXiv:1608.02412v2 [math.OC]

  36. Raymond JP (2006) Feedback boundary stabilization of the two-dimensional Navier–Stokes equations. SIAM J Control Optim 45(3):790–828. https://doi.org/10.1137/050628726

    Article  MathSciNet  MATH  Google Scholar 

  37. Raymond JP (2007) Feedback boundary stabilization of the three-dimensional incompressible Navier–Stokes equations. J Math Pures Appl 87(6):627–669. https://doi.org/10.1016/j.matpur.2007.04.002

    Article  MathSciNet  MATH  Google Scholar 

  38. Raymond JP (2007) Stokes and Navier–Stokes equations with nonhomogeneous boundary conditions. Ann Inst H Poincaré Anal Non Linéaire 24(6):921–951. https://doi.org/10.1016/j.anihpc.2006.06.008

    Article  MathSciNet  MATH  Google Scholar 

  39. Raymond JP, Thevenet L (2010) Boundary feedback stabilization of the two-dimensional Navier–Stokes equations with finite-dimensional controllers. Discrete Contin Dyn Syst 27(3):1159–1187. https://doi.org/10.3934/dcds.2010.27.1159

    Article  MathSciNet  MATH  Google Scholar 

  40. Rodrigues SS (2014) Local exact boundary controllability of 3D Navier–Stokes equations. Nonlinear Anal 95:175–190. https://doi.org/10.1016/j.na.2013.09.003

    Article  MathSciNet  MATH  Google Scholar 

  41. Rodrigues SS (2015) Boundary observability inequalities for the 3D Oseen–Stokes system and applications. ESAIM Control Optim Calc Var 21(3):723–756. https://doi.org/10.1051/cocv/2014045

    Article  MathSciNet  MATH  Google Scholar 

  42. Rodrigues SS (2018) Feedback boundary stabilization to trajectories for 3D Navier–Stokes equations. Appl Math Optim https://doi.org/10.1007/s00245-017-9474-5 (electronic)

  43. Schlögl F (1972) Chemical reaction models for non-equilibrium phase transitions. Z. Phys. 253:147–161. https://doi.org/10.1007/BF01379769

    Article  Google Scholar 

  44. Taylor ME (1997) Partial differential equations I—basic theory. No. 115 in Appl Math Sci Springer. https://doi.org/10.1007/978-1-4419-7055-8 (corrected 2nd printing)

  45. Temam R (1997) Infinite-dimensional dynamical systems in mechanics and physics, 2nd edn. No. 68 in Appl Math Sci, Springer. https://doi.org/10.1007/978-1-4612-0645-3

  46. Temam R (2001) Navier-Stokes equations: theory and numerical analysis. AMS Chelsea Publishing, Providence, RI, reprint of the 1984 edition. https://bookstore.ams.org/chel-343-h. Accessed 12 July 2018

  47. Ungureanu VM, Dragan V (2012) Nonlinear differential equations of Riccati type on ordered Banach spaces. In: Electron. J. Qual. Theory Differ. Equ., Proc. 9’th Coll. QTDE, 17, pp 1–22. https://doi.org/10.14232/ejqtde.2012.3.17

  48. Vazquez R, Krstic M (2005) A closed-form feedback controller for stabilization of linearized Navier–Stokes equations: the 2D Poisseuille flow. In: Proceedings 44th IEEE CDC-ECC’05, Seville, Spain, pp 7358–7365. https://doi.org/10.1109/CDC.2005.1583349

  49. Volpert V, Petrovskii S (2009) Reaction-diffusion waves in biology. Phys Life Rev 6(4):267–310. https://doi.org/10.1016/j.plrev.2009.10.002

    Article  Google Scholar 

  50. Wu M (1974) A note on stability of linear time-varying systems. IEEE Trans Autom Control 19(2):162. https://doi.org/10.1109/TAC.1974.1100529

    Article  MathSciNet  Google Scholar 

  51. Yamamoto M (2009) Carleman estimates for parabolic equations and applications. Inverse Probl 25:123013. https://doi.org/10.1088/0266-5611/25/12/123013

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the Austrian Science Fund (FWF): P 26034-N25. D. Phan thanks RICAM-OeAW, Linz, where most of the work has been done, for the provided support and hospitality. The authors are also grateful to the anonymous referees for their constructive comments and suggestions, which have helped the authors to improve the exposition and the presentation of the results in the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duy Phan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of Lemma 2.2

Observe that given z solving (22), with \(\gamma =0\), by rescaling time \(t=\frac{\tau }{\nu }\) and defining \(\breve{z}(\tau )=z(\frac{\tau }{\nu })\), \(\breve{a}(\tau )={\hat{a}}(\frac{\tau }{\nu })\), \(\breve{b}(\tau )={\hat{b}}(\frac{\tau }{\nu })\), and \(\breve{h}(\tau )=h(\frac{\tau }{\nu })\), we find

$$\begin{aligned} \partial _\tau \breve{z}-\varDelta \breve{z}+ \textstyle \frac{\breve{a}}{\nu } \breve{z} +\nabla \cdot \left( \textstyle \frac{\breve{b}}{\nu }\breve{z}\right) +\textstyle \frac{\breve{h}}{\nu }=0, \qquad \breve{z}|_\varGamma =0, \qquad \breve{z}(\nu s_0)=z_0. \end{aligned}$$

Then, by standard arguments, we can find

$$\begin{aligned} \left| \breve{z}(\nu s)\right| _{H}^2&\le \mathrm {e}^{\frac{C^2}{\nu ^2}C_{\mathcal {W}}(\nu s-\nu s_0)} \left( \left| \breve{z}(\nu s_0)\right| _{H}^2+\textstyle \frac{1}{\nu ^2}\left| \breve{h}\right| _{L^2((\nu s_0,\nu s),V')}^2\right) ,\\ 2\nu \left| \breve{z}\right| _{L^2(\nu I,V)}^2&= \left| \breve{z}(\nu s_0)\right| _{H}^2-\left| \breve{z}(\nu s_1)\right| _{H}^2 +\int _{\nu s_0}^{\nu s_1}\left\langle \textstyle \frac{\breve{a}}{\nu } \breve{z} +\nabla \cdot \left( \textstyle \frac{\breve{b}}{\nu }\breve{z}\right) +\textstyle \frac{\breve{h}}{\nu },\breve{z}\right\rangle _{V',V}\,\mathrm {d}\tau \\&\le C_1\left| \breve{z}\right| _{L^\infty (\nu I,H)}^2 +3\left| \textstyle \frac{\breve{h}}{\nu }\right| _{L^2(\nu I,V')}^2+ \left| \breve{z}\right| _{L^2(\nu I,V)}^2, \end{aligned}$$

with \(C_1:=\left( 1+3C^2\left| \textstyle \frac{\breve{a}}{\nu }\right| _{L^\infty (\nu I,L^d)}^2 +3C^2\left| \textstyle \frac{\breve{b}}{\nu }\right| _{L_w^\infty (\nu I,L^\infty )}^2\right) \). Therefore,

$$\begin{aligned} \left| {z}(s)\right| _{H}^2&\le \mathrm {e}^{\frac{C^2}{\nu }C_{\mathcal {W}}(s-s_0)} \left( \left| {z}(s_0)\right| _{H}^2+\textstyle \frac{1}{\nu }\left| h\right| _{L^2((s_0,s),V')}^2\right) ,\\ \left| z\right| _{L^2(I,V)}^2&\le \left( \textstyle \frac{1}{2\nu }+\textstyle \frac{3C^2}{2\nu ^3}\left| (a,b)\right| _{\mathcal {W}}^2 \right) \left| {z}\right| _{L^\infty (I,H)}^2 +\textstyle \frac{3}{2\nu ^2}\left| {h}\right| _{L^2(I,V')}^2,\\ \left| {\textstyle \frac{\partial }{\partial t}} z\right| _{L^2(I,V')}&\le \left( \nu +C\left| a\right| _{L^\infty (I,L^d)}+C\left| b\right| _{L_w^\infty (I,L^\infty )}\right) \left| {z}\right| _{L^2(I,V)} +\left| {h}\right| _{L^2(I,V')}, \end{aligned}$$

which imply the statement of Lemma 2.2. \(\square \)

1.2 Proof of Proposition 2.1

We construct an extension for \({\hat{b}}={\hat{b}}(t,x)\) independent of t. We consider a different local system of space coordinates w, in order to flatten the boundary. We use some basic concepts from Riemannian manifolds, see [44, chapter 1, Section 13 and chapter 2, Section 2].

Change of coordinates. Up to a translation and rotation, we may suppose that locally the boundary \(\varGamma =\partial \varOmega \) is the graph of a smooth function \(\varLambda \), with \(\overline{w}:=(w_1,w_2,\ldots ,w_{d-1})\),

$$\begin{aligned} \overline{w}&\mapsto G_\varLambda (\overline{w}):=(\overline{w},\varLambda (\overline{w}))\in \varGamma ,\\ \overline{w}\in {\mathbb {D}}_r^{d-1}&:=\{\overline{w}\in {\mathbb {R}}^{d-1}\mid w_1^2+w_2^2+\cdots +w_{d-1}^2\le r\}, \end{aligned}$$

with (small) \(r>0\). Locally, a tubular neighborhood is given by

$$\begin{aligned} \mathcal {T}=\mathcal {T}_{r,l}:=\left\{ x\in {\mathbb {R}}^d\mid x=G_\varLambda (\overline{w})+w_d\mathbf {n}_{G_\varLambda (\overline{w})},\quad w:=(\overline{w},w_{d})\in {\mathbb {D}}_r^{d-1}\times (-l,l)\right\} , \end{aligned}$$
(A.1)

with (small) \(l>0\). Where \(\mathbf {n}_{G_\varLambda (\overline{w})}\) stands for the unit outward normal vector at \(G_\varLambda (\overline{w})\in \varGamma \).

Let us denote \(\mathcal {O}^-={\mathbb {D}}_r^{d-1}\times (-l,0)\) and \(\mathcal {O}^+={\mathbb {D}}_r^{d-1}\times (0,l)\). Notice that the points outside \(\varOmega \) correspond to those in \(\mathcal {O}^+\). We may suppose that \(x_0=(0,G_\varLambda (0))\in \varGamma _{1}\subseteq \varGamma \textstyle \bigcap \mathcal {T}\), that is, in Proposition 2.1 we may take \({\widetilde{\omega }}\) corresponding to a subset of \(\mathcal {O}^+\).

The new coordinates \((w_1,w_2,\ldots ,w_d)\) induce the vector fields

$$\begin{aligned} \textstyle \frac{\partial }{\partial _{w_i}}=\sum \limits _{i=1}^{d}\frac{\partial x_j}{\partial _{w_i}}\frac{\partial }{\partial _{x_j}},\quad i=1,2,\ldots ,d, \end{aligned}$$
(A.2)

defined in \(\mathcal {O}:={\mathbb {D}}_r^{d-1}\times (-l,l)\). We can see the neighborhood \(\mathcal {T}\) (endowed with the usual Euclidean scalar product) as the Riemannian manifold \((\mathcal {O},g)\) by taking the metric tensor

$$\begin{aligned} g=\sum \limits _{i=1}^{d}\sum \limits _{j=1}^{d}g_{ij}\mathrm {d}w_j\otimes \mathrm {d}w_j, \qquad \text{ with }\quad g_{ij}=\left( {\textstyle \frac{\partial }{\partial _{w_i}}},{\textstyle \frac{\partial }{\partial _{w_j}}}\right) _{{\mathbb {R}}^d} \end{aligned}$$

where \(\left( \cdot ,\cdot \right) _{{\mathbb {R}}^d}\) stands for the usual Euclidean scalar product in \({\mathbb {R}}^d\).

The divergence of a vector field \(V=\sum \limits _{i=1}^{d}V_i\textstyle \frac{\partial }{\partial _{w_i}}\) reads, in the new coordinates,

$$\begin{aligned} \nabla _w\cdot V =(-1)^{d}\frac{1}{\sqrt{{\bar{g}}}}\displaystyle \sum _{j=1}^{d}\textstyle \frac{\partial (V_j\sqrt{{\bar{g}}})}{\partial _{w_j}}, \end{aligned}$$

where \({\bar{g}}:=\det [g_{ij}]\) stands for the determinant of the matrix whose entries are the coefficients of the metric tensor. Recall that in our setting \(\sqrt{{\bar{g}}}\) coincides with the Jacobian \(\left| \det \left[ {\frac{\partial x}{\partial w}}\right] \right| \) of the smooth diffeomorphism \(w\mapsto x\), because

$$\begin{aligned}{}[g_{ij}]=\left[ \sum _{k=1}^d\textstyle \frac{\partial x_k}{\partial w_i}\textstyle \frac{\partial x_k}{\partial w_j}\right] =\left[ {\frac{\partial x}{\partial w}}\right] \left[ {\frac{\partial x}{\partial w}}\right] ^\top , \end{aligned}$$

where \(\left[ {\frac{\partial x}{\partial w}}\right] ^\top \) is the transpose matrix of \(\left[ {\frac{\partial x}{\partial w}}\right] \).

The extension. For a given vector field \(V^-=\sum \limits _{i=1}^{d}V_i^-\textstyle \frac{\partial }{\partial _{w_i}}\), defined in \(\mathcal {O}^-\), we consider the following vector field defined in \(\mathcal {O}^+\):

$$\begin{aligned} V^+:=\sum \limits _{i=1}^{d}V_i^+\textstyle \frac{\partial }{\partial _{w_i}},\quad \text{ with }\quad {\left\{ \begin{array}{ll} V_i^+(\overline{w},s)=-\mathcal {Q}(w)V_i^-(\overline{w},-s),&{} \text{ if } i\ne d,\\ V_d^+(\overline{w},s)=\mathcal {Q}(w) V_d^-(\overline{w},-s),&{} \end{array}\right. } \end{aligned}$$
(A.3)

where \(s\in (0,l)\) and

$$\begin{aligned} \mathcal {Q}(w):=\frac{\sqrt{{\bar{g}}}|_{(\overline{w},-s)}}{\sqrt{{\bar{g}}}|_{(\overline{w},s)}}. \end{aligned}$$

Then, denoting the mapping \(\sigma :\mathcal {O}^+\rightarrow \mathcal {O}^-\), \((\overline{w},s)\mapsto (\overline{w},-s)\), we find

$$\begin{aligned}&\sqrt{{\bar{g}}}|_{(\overline{w},s)} (-1)^{d}(\nabla _w\cdot V^+)|_{(\overline{w},s)} =\displaystyle \sum _{j=1}^{d}\left. \textstyle \frac{\partial (V^+_j\sqrt{{\bar{g}}})}{\partial _{w_j}}\right| _{(\overline{w},s)}\\&\quad =\left. \textstyle \frac{\partial ((V^-_d\sqrt{{\bar{g}}})\circ \sigma )}{\partial _{w_d}}\right| _{(\overline{w},s)} -\displaystyle \sum _{j=1}^{d-1}\left. \textstyle \frac{\partial ((V^-_d\sqrt{{\bar{g}}})\circ \sigma )}{\partial _{w_j}}\right| _{(\overline{w},s)} =-\displaystyle \sum _{j=1}^{d}\left. \textstyle \frac{\partial (V^-_d\sqrt{{\bar{g}}})}{\partial _{w_j}}\right| _{(\overline{w},-s)}, \end{aligned}$$

which gives us

$$\begin{aligned} (\nabla _w\cdot V^+)|_{(\overline{w},s)}=-\mathcal {Q}(w)(\nabla _w\cdot V^-)|_{(\overline{w},-s)}. \end{aligned}$$
(A.4)

For \(S\subseteq \mathcal {O}\), let us denote \(\mathcal {W}_{2}(S):=\{v\in L^\infty (S,{\mathbb {R}}^d)\mid (\nabla _w\cdot v)\in L^r_g(S,{\mathbb {R}})\}\), with \(r\in \{2,\infty \}\) (cf. (29)). In particular, since \(\mathcal {Q}(w)\) is a smooth function, we observe that \(V^+\in \mathcal {W}_{2}(\mathcal {O}^+)\) if \(V^-\in \mathcal {W}_{2}(\mathcal {O}^-)\). Here, \((f,h)_{L^2_g(S,{\mathbb {R}})}:=\int _S fh\, \mathrm {d}\mathcal {O}\), \(\mathrm {d}\mathcal {O}:=\sqrt{{\bar{g}}}\mathrm {d}w_1\wedge \mathrm {d}w_2\wedge \cdots \wedge \mathrm {d}w_d\). It is also clear that the linear mapping \(V^-\mapsto V^+\) is continuous. Finally, we prove that the function defined by

$$\begin{aligned} V^-\mapsto \overline{V},\quad \text{ with }\quad \overline{V}(w):={\left\{ \begin{array}{ll} V^-(w),&{}\text{ if } w\in \mathcal {O}^-,\\ V^+(w),&{}\text{ if } w\in \mathcal {O}^+, \end{array}\right. } \end{aligned}$$

maps \(\mathcal {W}_{2}(\mathcal {O}^-)\) into \(\mathcal {W}_{2}(\mathcal {O})\). We need to prove that \(\nabla _w\cdot \overline{V}\in L^2_g(\mathcal {O},{\mathbb {R}})\). For a smooth function \(\phi \in \mathcal {D}(\mathcal {O}):=C_\mathrm{c}^\infty (\mathcal {O},{\mathbb {R}})\) with support contained in \(\mathcal {O}\) we find, in the distribution sense, with \(\varGamma _0:=\{w\in \mathcal {O}\mid w_d=0\}\),

$$\begin{aligned}&\langle \nabla _w\cdot \overline{V},\phi \rangle _{\mathcal {D}(\mathcal {O})',\mathcal {D}(\mathcal {O})} :=-\langle \overline{V},\nabla _w\phi \rangle _{\mathcal {D}(\mathcal {O})',\mathcal {D}(\mathcal {O})}=-(\overline{V},\nabla _w\phi )_{L^2_g(\mathcal {O},{\mathbb {R}})}\\&\quad =(\nabla _w\cdot \overline{V},\phi )_{L^2_g(\mathcal {O}^-,{\mathbb {R}})}+(\nabla _w\cdot \overline{V},\phi )_{L^2_g(\mathcal {O}^+,{\mathbb {R}})} \\&\qquad -\int _{\varGamma _0}\!\! \phi g\left( V^-,\textstyle \frac{\partial }{\partial _{w_d}}\right) -\phi g\left( V^+,\textstyle \frac{\partial }{\partial _{w_d}}\right) \,\mathrm {d}_g\varGamma _0. \end{aligned}$$

Notice that \(\textstyle \frac{\partial }{\partial _{w_d}}\) is the unit outward normal at \(\varGamma _0\subset \partial \mathcal {O}^-\).

Now, since \(g\left( V^-,\textstyle \frac{\partial }{\partial _{w_d}}\right) -g\left( V^+,\textstyle \frac{\partial }{\partial _{w_d}}\right) =V^-_d-V^+_d\), from \(V^+_d(\overline{w},s)=\mathcal {Q}(w)V^-_d(\overline{w},-s)\) for all \(s>0\) and \(\mathcal {Q}(\overline{w},0)=1\), we can conclude that \(V^-_d-V^+_d\) necessarily vanishes at \(\varGamma _0\). Hence, the boundary term vanishes, and we can conclude that \(\nabla _w\cdot V\in L^2_g(\mathcal {O},{\mathbb {R}})\). We may write

$$\begin{aligned} \langle \nabla _w\cdot V,\phi \rangle _{\mathcal {D}(\mathcal {O})',\mathcal {D}(\mathcal {O})}&=(\nabla _w\cdot V,\phi )_{L^2_g(\mathcal {O}^-,{\mathbb {R}})}+(\nabla _w\cdot V,\phi )_{L^2_g(\mathcal {O}^+,{\mathbb {R}})}\\&=(\nabla _w\cdot V,\phi )_{L^2_g(\mathcal {O},{\mathbb {R}})}. \end{aligned}$$

Therefore, if in addition we have \(\nabla _w\cdot V^-\in L^\infty _g(\mathcal {O}^-,{\mathbb {R}})\) then from (A.4) it follows that \(\nabla _w\cdot \overline{V}\in L^\infty _g(\mathcal {O},{\mathbb {R}})\).

It is also clear that the mapping \(V^-\mapsto \overline{V}\) maps \(\mathcal {W}_{2}(\mathcal {O}^-)\) into \(\mathcal {W}_{2}(\mathcal {O})\) continuously.

In the original coordinates, the extension above reads: given \({\hat{b}}={\hat{b}}_i\frac{\partial }{\partial _{x_i}}\), we firstly rewrite \({\hat{b}}\) in the new coordinates \({\hat{b}}={\hat{b}}_i^w\frac{\partial }{\partial _{w_i}}=:V^-\), next we extend \(V^-\) to \(\overline{V}=\overline{V}_i\frac{\partial }{\partial _{w_i}}\) (through \(V^+\) as above), finally we rewrite \(\overline{V}\) in the original coordinates: \(\overline{V}=\overline{V}_i^o\frac{\partial }{\partial _{x_i}}=:\bar{b}\).

The continuity of \(({\tilde{a}},{\tilde{b}})\mapsto ({\tilde{a}},\overline{b})\) from \(\mathcal {W}_\mathrm{st}\) into \({\widetilde{\mathcal {W}}}_\mathrm{st}\) follows straightforwardly. \(\square \)

Remark A.2

In [40, Proposition 4.2] we find, for \(d=3\), the result we present here in Proposition 2.1. Our proof borrows the idea from [40, Appendix]. We still present the proof in here because in [40], when computing the vector fields \(\frac{\partial }{\partial _{w_i}}\) for \(i=1,2,\ldots ,d-1\), as in (A.2) above, the terms \(w_d\frac{\partial (\mathbf {n}_{G_{\varLambda (\overline{w})}})_j}{\partial _{w_i}}\frac{\partial }{\partial _{x_j}}\) have been missed, see [40, Eq. (A.2)].

1.3 Proof of Proposition 2.2

From [33, chapter 4, Section 2.5, Theorem 2.3] we know that \(u\mapsto (u_0,u|_\varGamma )\), maps the space \(W({\mathbb {R}}_0,H^2(\varOmega ,{\mathbb {R}}),L^2(\varOmega ,{\mathbb {R}}))\) continuously onto the product space

$$\begin{aligned} \left\{ (z,g)\in H^1(\varOmega ,{\mathbb {R}})\times \left( L^2({\mathbb {R}}_0,H^\frac{3}{2}(\varGamma ,{\mathbb {R}}))\textstyle \bigcap H^\frac{3}{4}({\mathbb {R}}_0,L^2(\varGamma ,{\mathbb {R}}))\right) \,\Bigr |\, g(0)=z|_\gamma \right\} . \end{aligned}$$

In particular, this implies that \(G^2(J,\varGamma ) = L^2(J,H^\frac{3}{2}(\varGamma ,{\mathbb {R}}))\bigcap H^\frac{3}{4}(J,L^2(\varGamma ,{\mathbb {R}}))\).

From the discussion in Remark 2.3, it follows that \((\vartheta \cdot )\in \mathcal {L}(G^2(J,\varGamma ))\). It is also not difficult to check that

$$\begin{aligned} {\vartheta {P}}_M\vartheta \in \mathcal {L}(L^2(J,H^\frac{3}{2}(\varGamma ,{\mathbb {R}})))\textstyle \bigcap \mathcal {L}(H^1(J,L^2(\varGamma ,{\mathbb {R}}))). \end{aligned}$$

Indeed, we may suppose, without loss of generality, that the family of functions \(\varPsi _i\) is orthonormal in \(L^2(\varGamma ,{\mathbb {R}})\), and in that case, for a Hilbert space ,

$$\begin{aligned} \left| {\vartheta {P}}_M{\vartheta {\zeta }}\right| _{L^2(J,X)}^2&=\!\int _{J}\left| \vartheta \sum _{i=1}^M({\vartheta {\zeta }}(s),\varPsi _i)_{L^2(\varGamma ,{\mathbb {R}})}\varPsi _i\right| _{X}^2\,\!\!\!\!\!\mathrm {d}s\\&\le C_{\vartheta {M}}\sum _{i=1}^M\!\int _{J}\left| \zeta (s)\right| _{L^2(\varGamma ,{\mathbb {R}})}^2\left| \varPsi _i\right| _{X}^2\,\!\mathrm {d}s\\&\le C_{\vartheta {M}}\max _{1\le i\le M}\left| \varPsi _i\right| _{X}^2\left| \zeta \right| _{L^2(J,L^2(\varGamma ,{\mathbb {R}}))}^2\le C\left| \zeta \right| _{L^2(J,X)}^2,\\ \left| \textstyle \frac{\partial }{\partial t}{\vartheta {P}}_M\vartheta \zeta \right| _{L^2(J,X)}^2&=\int _{J}\left| \vartheta \textstyle \frac{\partial }{\partial s}\displaystyle \sum _{i=1}^M(\vartheta \zeta (s),\varPsi _i)_{L^2(\varGamma ,{\mathbb {R}})}\varPsi _i\right| _{X}^2\!\!\!\,\mathrm {d}s \le C\left| \textstyle \frac{\partial }{\partial t}\zeta \right| _{L^2(J,X)}^2. \end{aligned}$$

Now, from \({\vartheta {P}}_M\vartheta \in \mathcal {L}(L^2(J,L^2(\varGamma ,{\mathbb {R}})))\textstyle \bigcap \mathcal {L}(H^1(J,L^2(\varGamma ,{\mathbb {R}})))\), by an interpolation argument, it follows that \({\vartheta {P}}_M\vartheta \in \mathcal {L}(H^\frac{3}{4}(J,L^2(\varGamma ,{\mathbb {R}})))\). See [32, chapter 1, Section 5.1] and [33, chapter 4, Section 2.1]. Finally, \({\vartheta {P}}_M\vartheta \in \mathcal {L}(L^2(J,H^\frac{3}{2}(\varGamma ,{\mathbb {R}})))\textstyle \bigcap \mathcal {L}(H^\frac{3}{4}(J,L^2(\varGamma ,{\mathbb {R}})))\) implies, by Proposition 2.3, that \({\vartheta {P}}_M\vartheta \in \mathcal {L}(G^2(J,\varGamma ))\).

Finally, we prove that \(\vartheta Q_{{\widetilde{M}}}P_M\vartheta \in \mathcal {L}(G^2(J,\varGamma ))\). Since \({\vartheta {P}}_M\vartheta \in \mathcal {L}(G^2(J,\varGamma ))\), it is enough to prove that \(Q_{{\widetilde{M}}}\in \mathcal {L}({\vartheta {P}}_M\vartheta G^2(J,\varGamma ), G^2(J,\varGamma ))\). Notice that

$$\begin{aligned} {\vartheta {P}}_M\vartheta G^2(J ,\varGamma )\subseteq L^2(J ,{\vartheta {P}}_MH^\frac{3}{2}(\varGamma ))\textstyle \bigcap H^{\frac{3}{4}}(J ,{\vartheta {P}}_ML^2(\varGamma )), \end{aligned}$$

and \(P_MH^\frac{3}{2}(\varGamma )=\mathcal {S}_\varPsi =P_ML^2(\varGamma )\). Since the space \(\mathcal {S}_\varPsi =\mathrm{span}\{\varPsi _i\mid i\in \{1,2,\ldots ,M\}\}\) is finite-dimensional, it remains to observe that \(Q_{{\widetilde{M}}}\in \mathcal {L}\left( L^2(J ,{\mathbb {R}}^M)\textstyle \bigcap H^{\frac{3}{4}}(J ,{\mathbb {R}}^M)\right) \), which follows from \(Q_{{\widetilde{M}}}\in \mathcal {L}\bigl (L^2(J ,{\mathbb {R}})\bigr )\textstyle \bigcap \mathcal {L}\bigl (H^{\frac{3}{4}}(J ,{\mathbb {R}})\bigr )\). Finally, observe that looking at \(H^{\frac{3}{4}}(J ,{\mathbb {R}})=:H^{\frac{3}{4}}_\mathrm{f}(J ,{\mathbb {R}})\) as the domain of \((-\varDelta _{J }+1)^\frac{3}{8}\) (cf. proof of Lemma 2.8) we find the identities \(\left| Q_{{\widetilde{M}}}\right| _{\mathcal {L}\bigl (L^2(J ,{\mathbb {R}})\bigr )}^2=1 =\left| Q_{{\widetilde{M}}}\right| _{\mathcal {L}\bigl (H^{\frac{3}{4}}_\mathrm{f}(J ,{\mathbb {R}})\bigr )}^2\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phan, D., Rodrigues, S.S. Stabilization to trajectories for parabolic equations. Math. Control Signals Syst. 30, 11 (2018). https://doi.org/10.1007/s00498-018-0218-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00498-018-0218-0

Keywords

Mathematics Subject Classification

Navigation