A Diophantine Ramsey Theorem


Let p ∈ ℤ [x] be any polynomial with p(0) =0, k ∈ ℕ and let c1, …, cs ∈ ℤ, sk(k + 1), be non-zero integers such that \(\sum {{c_1} = 0} \). We show that for a wide class of coefficients c1, …, cs in every finite coloring \(\mathbb{N} = {A_1} \cup \cdots \cup {A_r}\) there is a monochromatic solution to the equation

$${c_1}x_1^k + \cdots + {c_s}x_s^k = \text{p}(y).$$

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


  1. [1]

    V. BERGELSON: Ergodic Ramsey theory - an update, in: Ergodic theory ofd actions (Warwick, 1993–1994), 1–61, London Math. Soc. Lecture Note Ser., 228, Cambridge Univ. Press, Cambridge, 1996.

    Google Scholar 

  2. [2]

    J. BOURGAIN, C. DEMETER and L. GUTH: Proof of the main conjecture in Vinogradov’s mean value theorem for degrees higher than three, Ann. of Math. 184 (2016), 633–682.

    MathSciNet  Article  Google Scholar 

  3. [3]

    T. D. BROWNING and S. PRENDIVILLE: A transference approach to a Roth-type theorem in the squares, Int. Math. Res. Not. IMRN 7 (2017), 2219–2248.

    MathSciNet  MATH  Google Scholar 

  4. [4]

    S. CHOW: Roth-Waring-Goldbach, Int. Math. Res. Not. IMRN 8 (2018), 2341–2374.

    MathSciNet  MATH  Google Scholar 

  5. [5]

    S. CHOW, S. LINDQVIST and S. PRENDIVILLE: Rado’s criterion over squares and higher powers, Journal of the European Mathematical Society, to appear.

  6. [6]

    P. CSIKVÁRI, K. GYARMATI and A. SÁRKÖZY: Density and ramsey type results on algebraic equations with restricted solution sets, Combinatorica 32 (2012), 425–449.

    MathSciNet  Article  Google Scholar 

  7. [7]

    K. CWALINA and T. SCHOEN: Tight bounds on additive Ramsey-type numbers, J. London Math. Soc. 96 (2017) 601–620.

    MathSciNet  Article  Google Scholar 

  8. [8]

    M. DI NASSO and L. LUPERI BAGLINI: Ramsey properties of nonlinear Diophantine equations, Adv. Math. 324 (2018), 84–117.

    MathSciNet  Article  Google Scholar 

  9. [9]

    S. EBERHARD: The abelian arithemtic regularity lemma, arXiv:1606.09303.

  10. [10]

    B. GREEN and S. LINDQVIST: Monochromatic solutions to x + y = z2, Canad. J. Math., 71 (2019), 579–605.

    MathSciNet  Article  Google Scholar 

  11. [11]

    B. GREEN: A Szemeredi-type regularity lemma in abelian groups, with applications, Geom. Fund. Anal. 15 (2005), 340–376.

    MathSciNet  Article  Google Scholar 

  12. [12]

    B. GREEN: Roth’s theorem in the primes, Ann. of Math. 161 (2005), 1609–1636.

    MathSciNet  Article  Google Scholar 

  13. [13]

    B. GREEN and T. SANDERS: Monochromatic sums and products, Discrete Anal. (2016), Paper No. 5.

  14. [14]

    B. GREEN and T. TAO: An arithmetic regularity lemma, an associated counting lemma, and applications, in: An irregular mind, 261–334, Bolyai Soc. Math. Stud., 21, János Bolyai Math. Soc., Budapest, 2010.

    Google Scholar 

  15. [15]

    B. GREEN and T. TAO: The quantitative behaviour of polynomial orbits on nilmanifolds, Ann. of Math. 175 (2012), 465–540.

    MathSciNet  Article  Google Scholar 

  16. [16]

    K. HENRIOT: Logarithmic bounds for translation-invariant equations in squares, Int. Math. Res. Not. IMRN 23 (2015), 12540–12562.

    MathSciNet  MATH  Google Scholar 

  17. [17]

    N. HINDMAN: Partitions and sums and products of integers, Trans. Amer. Math. Soc. 247 (1979), 227–245.

    MathSciNet  Article  Google Scholar 

  18. [18]

    A. KHALFALAH and E. SZEMERÉDI: On the number of monochromatic solutions of x + y = z2, Combin. Probab. Comput. 15 (2006), 213–227.

    MathSciNet  Article  Google Scholar 

  19. [19]

    T. H. LÊ: Partition regularity and the primes, C. R. Math. Acad. Sci. Paris 350 (2012), 439–441.

    MathSciNet  Article  Google Scholar 

  20. [20]

    H. LEFMANN: On partition regular systems of equations, J. Combin. Theory Ser. A 58 (1991), 35–53.

    MathSciNet  Article  Google Scholar 

  21. [21]

    S. LINDQVIST: Partition regularity of generalised Fermat equations. Combinatorica 38 (2018), 1457–1483.

    MathSciNet  Article  Google Scholar 

  22. [22]

    J. MOREIRA: Monochromatic sums and products in N, Ann. of Math. 185 (2017), 1069–1090.

    MathSciNet  Article  Google Scholar 

  23. [23]

    P. PACH: Monochromatic solutions to x + y = z2 in the interval [N, cN4], Bull. Lond. Math. Soc. 50 (2018), 1113–1116.

    MathSciNet  Article  Google Scholar 

  24. [24]

    R. RADO: Studien zur Kombinatorik, Math. Z. 36 (1933), 424–470.

    MathSciNet  Article  Google Scholar 

  25. [25]

    I. Z. RUZSA: Generalized arithmetical progressions and sumsets, Acta Math. Hungar. 65 (1994), 379–388.

    MathSciNet  Article  Google Scholar 

  26. [26]

    I. SCHUR: Über die Kongruenz xm + ymzm (modp), Jahresber. Dtsch. Math.- Ver. 25 (1916), 114–117.

    Google Scholar 

  27. [27]

    T. WOOLEY: The asymptotic formula in Waring’s problem, Int. Math. Res. Not. 7 (2012), 1485–1504.

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Tomasz Schoen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schoen, T. A Diophantine Ramsey Theorem. Combinatorica (2020). https://doi.org/10.1007/s00493-020-4482-5

Download citation

Mathematics Subject Classification (2010)

  • 11P99
  • 05D10