Skip to main content
Log in

Edge Lower Bounds for List Critical Graphs, Via Discharging

  • Original Paper
  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

A graph G is k-critical if G is not (k − 1)-colorable, but every proper subgraph of G is (k − 1)-colorable. A graph G is k-choosable if G has an L-coloring from every list assignment L with |L(v)|=k for all v, and a graph G is k-list-critical if G is not (k−1)-choosable, but every proper subgraph of G is (k−1)-choosable. The problem of determining the minimum number of edges in a k-critical graph with n vertices has been widely studied, starting with work of Gallai and culminating with the seminal results of Kostochka and Yancey, who essentially solved the problem. In this paper, we improve the best known lower bound on the number of edges in a k-list-critical graph. In fact, our result on k-list-critical graphs is derived from a lower bound on the number of edges in a graph with Alon–Tarsi number at least k. Our proof uses the discharging method, which makes it simpler and more modular than previous work in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Alon and M. Tarsi: Colorings and orientations of graphs, Combinatorica 12 (1992), 125–134.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. L. Brooks: On colouring the nodes of a network, Mathematical Proceedings of the Cambridge Philosophical Society, vol. 37, Cambridge Univ Press, 1941, 194–197.

    Google Scholar 

  3. D. W. Cranston and D. B. West: An introduction to the discharging method via graph coloring, Discrete Math 340 (2017), 766–793. extended version: A guide to the discharging method, https://arxiv.org/abs/1306.4434v1 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  4. G. A. Dirac: A theorem of R. L. Brooks and a conjecture of H. Hadwiger, Proceedings of the London Mathematical Society 3 (1957), no. 1, 161–195.

    Google Scholar 

  5. P. Erdős, A. L. Rubin and H. Taylor: Choosability in graphs, Proceedings of the West Coast Conference on Combinatorics, Graph Theory and Computing, Congressus Numerantium, vol. 26, 1979, 125–157.

    Google Scholar 

  6. T. Gallai: Kritische Graphen I., Publications of the Mathematical Institute of the Hungarian Academy of Sciences 8 (1963), 165–192 (in German).

    MathSciNet  MATH  Google Scholar 

  7. J. Hladký, D. Král’ and U. Schauz: Brooks’ theorem via the Alon–Tarsi theorem, Discrete Mathematics 310 (2010), 3426–3428.

    Article  MathSciNet  MATH  Google Scholar 

  8. H. A. Kierstead and A. V. Kostochka: Ore-type versions of Brooks’ theorem, Journal of Combinatorial Theory, Series B 99 (2009), 298–305.

    Article  MathSciNet  MATH  Google Scholar 

  9. H. A. Kierstead and L. Rabern: Improved lower bounds on the number of edges in list critical and online list critical graphs, arXiv preprint http://arxiv.org/abs/1406.7355 (2014).

    Google Scholar 

  10. A. V. Kostochka, L. Rabern and M. Stiebitz: Graphs with chromatic number close to maximum degree, Discrete Mathematics 312 (2012), 1273–1281.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. V. Kostochka and M. Stiebitz: A new lower bound on the number of edges in colour-critical graphs and hypergraphs, Journal of Combinatorial Theory, Series B 87 (2003), 374–402.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. V. Kostochka and M. Yancey: Ore’s conjecture for k=4 and Grötzsch’s theorem, Combinatorica 34 (2014), 323–329.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. V. Kostochka and M. Yancey: Ore’s conjecture on color-critical graphs is almost true, Journal of Combinatorial Theory, Series B 109 (2014), 73–101.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Krivelevich: On the minimal number of edges in color-critical graphs, Combinatorica 17 (1997), 401–426.

    Article  MathSciNet  MATH  Google Scholar 

  15. L. Rabern: Δ-critical graphs with small high vertex cliques, Journal of Combinatorial Theory, Series B 102 (2012), 126–130.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Riasat and U. Schauz: Critically paintable, choosable or colorable graphs, Discrete Mathematics 312 (2012), 3373–3383.

    Article  MathSciNet  MATH  Google Scholar 

  17. U. Schauz: Mr. Paint and Mrs. Correct, The Electronic Journal of Combinatorics 16 (2009), R77.

    MathSciNet  MATH  Google Scholar 

  18. U. Schauz: Flexible color lists in Alon and Tarsi’s theorem, and time scheduling with unreliable participants, The Electronic Journal of Combinatorics 17 (2010), R13.

    MathSciNet  MATH  Google Scholar 

  19. M. Stiebitz: Proof of a conjecture of T. Gallai concerning connectivity properties of colour-critical graphs, Combinatorica 2 (1982), 315–323.

    Article  MathSciNet  MATH  Google Scholar 

  20. V. G. Vizing; Vextex coloring with given colors, Metody Diskretnogo Analiza 29 (1976), 3–10 (in Russian).

    Google Scholar 

  21. X. Zhu: On-line list colouring of graphs, The Electronic Journal of Combinatorics 16 (2009), R127.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel W. Cranston.

Additional information

Research of the first author is partially supported by NSA Grant H98230-15-1-0013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cranston, D.W., Rabern, L. Edge Lower Bounds for List Critical Graphs, Via Discharging. Combinatorica 38, 1045–1065 (2018). https://doi.org/10.1007/s00493-016-3584-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-016-3584-6

Mathematics Subject Classification (2000)

Navigation