Skip to main content
Log in

Count Matroids of Group-Labeled Graphs

  • Original Paper
  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

A graph G = (V, E) is called (k, ℓ)-sparse if |F| ≤ k|V (F)| − ℓ for any nonempty FE, where V (F) denotes the set of vertices incident to F. It is known that the family of the edge sets of (k, ℓ)-sparse subgraphs forms the family of independent sets of a matroid, called the (k, ℓ)-count matroid of G. In this paper we shall investigate lifts of the (k, ℓ)- count matroids by using group labelings on the edge set. By introducing a new notion called near-balancedness, we shall identify a new class of matroids whose independence condition is described as a count condition of the form |F| ≤ k|V (F)|−ℓ+αψ (F) for some function αψ determined by a given group labeling ψ on E.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Berg and T. Jordán: Algorithms for graph rigidity and scene analysis, Proc. 11th Annual European Symposium on Algorithms (ESA), LNCS 2832, (2003), 78–89.

    Google Scholar 

  2. T. A. Dowling: A class of geometric lattices based on finite groups, J. Combin. Theory Ser. B 14 (1973), 61–86.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Edmonds: Submodular functions, matroids, and certain polyhedra, in: Combinatorial Structures and Their Applications (R. Guy, H. Hanani, N. Sauer, and J. Schönheim, eds.), (1970), 69–87.

    Google Scholar 

  4. A. Frank: Connections in combinatorial optimization, Oxford Lecture Series in Mathematics and Its Applications, Oxford University Press, (2011).

    MATH  Google Scholar 

  5. J. L. Gross and T. W. Tucker: Topological graph theory, Dover, New York, (1987).

    MATH  Google Scholar 

  6. R. Ikeshita: Infinitesimal rigidity of symmetric frameworks, Master Thesis, University of Tokyo, (2015).

    Google Scholar 

  7. T. Jordán, V. Kaszanitzky and S. Tanigawa: Gain-sparsity and symmetry-forced rigidity in the plane, Discrete & Computational Geometry 55 (2016), 314–372.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Lee and I. Streinu: Pebble game algorithms and sparse graphs, Discrete Math. 308 (2008), 1425–1437.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Malestein and L. Theran: Generic combinatorial rigidity of periodic frameworks, Adv. Math. 233 (2013), 291–331.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Malestein and L. Theran: Frameworks with forced symmetry II: orientationpreserving crystallographic groups, Geometriae Dedicata 170 (2014), 219–262.

    Article  MathSciNet  MATH  Google Scholar 

  11. T. Nixon and B. Schulze: Symmetry-forced rigidity of frameworks on surfaces, Geometriae Dedicata 182 (2016), 163–201.

    Article  MathSciNet  MATH  Google Scholar 

  12. E. Ross: Geometric and combinatorial rigidity of periodic frameworks as graphs on the torus, Ph.D. thesis, York University, Toronto, (2011).

    Google Scholar 

  13. P. Seymour A note on hyperplane generation, J. Combin. Theory Ser. B (1994), 61, 88–91.

    Article  MathSciNet  MATH  Google Scholar 

  14. B. Schulze and S. Tanigawa: Infinitesimal rigidity of symmetric frameworks, SIAM Discrete Math. 29 (2015), 1259–1286.

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Tanigawa: Matroids of gain graphs in applied discrete geometry, Trans. Amer. Math. Soc. 367 (2015), 8597–8641.

    Article  MathSciNet  MATH  Google Scholar 

  16. W. Whiteley: Some matroids from discrete applied geometry, Contemporary Mathematics 197 (1996), 171–312.

    Article  MathSciNet  MATH  Google Scholar 

  17. G. Whittle: A generalisation of the matroid lift construction, Trans. Amer. Math. Soc. 316 (1989), 141–159.

    Article  MathSciNet  MATH  Google Scholar 

  18. T. Zaslavsky: Biased graphs "II". the three matroids, J. Combin. Theory Ser. B 51 (1991), 46–72.

    Article  MathSciNet  MATH  Google Scholar 

  19. T. Zaslavsky: Frame matroids and biased graphs, Eur. J. Combin. (1994) 15, 303–307.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-ichi Tanigawa.

Additional information

Part of this research was conducted when the first author was a graduate student at the University of Tokyo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikeshita, R., Tanigawa, Si. Count Matroids of Group-Labeled Graphs. Combinatorica 38, 1101–1127 (2018). https://doi.org/10.1007/s00493-016-3469-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-016-3469-8

Mathematics Subject Classification (2000)

Navigation