Impacts of urban form and urban heat island on the outdoor thermal comfort: a pilot study on Mashhad

Abstract

There is an increasing demand for cooling cities because of its importance on human health and the quality of life in outdoor urban spaces. However, the development of methods in improving outdoor thermal comfort and zoning cities based on outdoor thermal comfort is still challenging. In this work, we propose a new approach to cities zoning from the lens of outdoor thermal comfort in the arid climate of the city of Mashhad, Iran, and investigate the impacts of urban form characteristics on pedestrian thermal comfort. The effects of complex urban form parameters including height to width (H/W) ratio, canyon orientation, tree canopy cover, and building surface materials on the thermal comfort of pedestrians were studied in the arid climate of Mashhad. Microclimate simulation and analysis is conducted in ENVI-met software, and ArcMap is used to calculate Mashhad urban heat islands. Path analysis in SPSS presents an urban form formulation, which predicts approximate outdoor thermal comfort condition in current and future urban context of Mashhad and other cities with the same climate. We finally demonstrate the use of our research method as an alternative method for all cities: urban heat island (UHI) zoning can be used as a substitute for urban form zonings based on outdoor thermal comfort, especially in large cities where data collection on urban form can be difficult due to limited time and resources.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. 1.

    A thermal insulation material, mainly composed of tar covered with a thin layer of aluminum foil

Abbreviations

PET:

Physiological equivalent temperature

PMV:

Predicted mean vote

SVF:

Sky view factor

MRT:

Mean radiant temperature

H/W:

The height-to-width

STDEV:

Standard deviation degrees

OTC:

Outdoor thermal comfort

UHI:

Urban heat island

LST:

Land surface temperature

ML:

Machine learning

References

  1. Ali-Toudert, F. (2005). Berichte des Meteorologischen Institutes der Universität Freiburg, Freiburg,.

  2. Alobaydi D, Bakarman MA, Obeidat B (2016) The Impact of urban form configuration on the urban heat island: the case study of Baghdad, Iraq. Proc Eng 145:820–827. https://doi.org/10.1016/j.proeng.2016.04.107

    Article  Google Scholar 

  3. Ameen R, Mourshed M (2017) Urban environmental challenges in developing countries—a stakeholder perspective. Habitat Int 64:1–10. https://doi.org/10.1016/j.habitatint.2017.04.002

    Article  Google Scholar 

  4. Baruti MM, Johansson E, Åstrand J (2019) Review of studies on outdoor thermal comfort in warm humid climates: challenges of informal urban fabric. Int J Biometeorol 63(10):1449–1462. https://doi.org/10.1007/s00484-019-01757-3

    Article  Google Scholar 

  5. Bruse M (1999) Simulating microscale climate interactions in complex terrain with a high- resolution numerical model: a case study for the Sydney CBD Area (Model Description). Paper presented at the International Conference on Urban Climatology & international congress of biometeorology, Sydney

    Google Scholar 

  6. Bruse, M. (2015). ENVI-metModel Homepage.

  7. Cuthbert AL, Anderson WP (2002) An examination of urban form in Halifax-Dartmouth: alternative approaches in data. Can J Urban Res 11(2):213–237

    Google Scholar 

  8. Dai, Q. (2014). The impact of urban form on thermal comfort across street zones. (Doctor of Philosophy), The Chinese University of Hong Kong,

  9. Dalman M, Salleh E, Sapian AR, Mohd Tahir O, Dola K, Saadatian O (2011) Microclimate and thermal comfort of urban forms and canyons in traditional and modern residential fabrics in Bandar Abbas, Iran. Mod Appl Sci 5(2):43–56

    Article  Google Scholar 

  10. Davtalab J, Deyhimi SP, Dessi V, Hafezi MR, Adib M (2020) The impact of green space structure on physiological equivalent temperature index in open space. Urban Clim 31:100574. https://doi.org/10.1016/j.uclim.2019.100574

    Article  Google Scholar 

  11. Dempsey N, Brown C, Raman S, Porta S, Jenks M, Jones C, Bramley G (2010) Elements of urban form. In: Jenks M, Jones C (eds) Dimensions of the Sustainable City. Springer Netherlands, Dordrecht, pp 21–51

    Google Scholar 

  12. Deng J-Y, Wong NH (2020) Impact of urban canyon geometries on outdoor thermal comfort in central business districts. Sustain Cities Soc 53:101966. https://doi.org/10.1016/j.scs.2019.101966

    Article  Google Scholar 

  13. Elnabawi MH, Hamza N, Dudek S (2015) Numerical modelling evaluation for the microclimate of an outdoor urban form in Cairo, Egypt. HBRC J 11(2):246–251. https://doi.org/10.1016/j.hbrcj.2014.03.004

    Article  Google Scholar 

  14. Emmanuel R, Rosenlund H, Johansson E (2007) Urban shading—a design option for the tropics? A study in Colombo, Sri Lanka. Int J Climatol 27(14):1995–2004. https://doi.org/10.1002/joc.1609

    Article  Google Scholar 

  15. Erell E, Pearlmutter D, & Williamson TJ (2011). Urban microclimate: designing the spaces between buildings: Taylor & Francis.

  16. Fahmy M, Hathway A, Pattacini L, & Elwan A (2011). Environmental thermal impact assessment of regenerated urban form: a case study in Sheffield.

  17. Gasparrini A, Armstrong B (2011) The impact of heat waves on mortality. Epidemiology (Cambridge, Mass) 22(1):68–73. https://doi.org/10.1097/EDE.0b013e3181fdcd99

    Article  Google Scholar 

  18. Gusson CS, Duarte DHS (2016) Effects of built density and urban morphology on urban microclimate - calibration of the model ENVI-met V4 for the subtropical Sao Paulo, Brazil. Proc Eng 169:2–10. https://doi.org/10.1016/j.proeng.2016.10.001

    Article  Google Scholar 

  19. Hong S-K, Lee S-W, Jo H-K, Yoo M (2019) Impact of frequency of visits and time spent in urban green space on subjective well-being. Sustainability 11:4189. https://doi.org/10.3390/su11154189

    Article  Google Scholar 

  20. Höppe P (1999) The physiological equivalent temperature–a universal index for the assessment of the thermal environment. Int J Biometeorol 43:71–75

    Article  Google Scholar 

  21. Hu Y, White M, Ding W (2016) An Urban Form Experiment on urban heat island effect in high density area. Proc Eng 169:166–174. https://doi.org/10.1016/j.proeng.2016.10.020

    Article  Google Scholar 

  22. Huang T, Li J, Xie Y, Niu J, Mak CM (2017) Simultaneous environmental parameter monitoring and human subject survey regarding outdoor thermal comfort and its modelling. Build Environ 125:502–514. https://doi.org/10.1016/j.buildenv.2017.09.015

    Article  Google Scholar 

  23. Irger M (2014) The Effect Of Urban Form On Urban Microclimate. Doctor of Philosophy, New South Wales

    Google Scholar 

  24. Jamei E, Rajagopalan P (2018) Effect of street design on pedestrian thermal comfort. Archit Sci Rev 62(2):92–111. https://doi.org/10.1080/00038628.2018.1537236

    Article  Google Scholar 

  25. Jamei E, Rajagopalan P, Seyedmahmoudian M, Jamei Y (2016) Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort. Renew Sust Energ Rev 54:1002–1017. https://doi.org/10.1016/j.rser.2015.10.104

    Article  Google Scholar 

  26. Jhaldiyal A, Gupta K, Gupta PK, Thakur P, Kumar P (2018) Urban morphology extractor: a spatial tool for characterizing urban morphology. Urban Clim 24:237–246. https://doi.org/10.1016/j.uclim.2018.04.003

    Article  Google Scholar 

  27. Jihad AS, Tahiri M (2016) Modeling the urban geometry influence on outdoor thermal comfort in the case of Moroccan microclimate. Urban Clim 16:25–42. https://doi.org/10.1016/j.uclim.2016.02.002

    Article  Google Scholar 

  28. Johansson E (2006) Influence of urban geometry on outdoor thermal comfort in a hot dry climate: a study in Fez, Morocco. Build Environ 41(10):1326–1338

    Article  Google Scholar 

  29. Kedissa C, Outtas S, Belarbi R (2016) The impact of height/width ratio on the microclimate and thermal comfort levels of urban courtyards. Int J Sustain Build Technol Urban Dev 7(3-4):174–183. https://doi.org/10.1080/2093761X.2017.1302830

    Article  Google Scholar 

  30. Kropf KS (1993). An enquiry into the definition of built form in urban morphology. (unpublished PhD thesis), University of Birmingham, Birmingham.

  31. Lamarca C, Qüense J, Henríquez C (2018) Thermal comfort and urban canyons morphology in coastal temperate climate, Concepción, Chile. Urban Clim 23:159–172. https://doi.org/10.1016/j.uclim.2016.10.004

    Article  Google Scholar 

  32. Lee H, Mayer H (2018) Thermal comfort of pedestrians in an urban street canyon is affected by increasing albedo of building walls. Int J Biometeorol 62:1199–1209. https://doi.org/10.1007/s00484-018-1523-5

    Article  Google Scholar 

  33. Lee H, Mayer H, Kuttler W (2019) To what extent does the air flow initialisation of the ENVI-met model affect human heat stress simulated in a common street canyon? Int J Biometeorol 63(1):73–81. https://doi.org/10.1007/s00484-018-1637-9

    Article  Google Scholar 

  34. Lee LSH, Jim CY (2019) Urban woodland on intensive green roof improved outdoor thermal comfort in subtropical summer. Int J Biometeorol 63(7):895–909. https://doi.org/10.1007/s00484-019-01702-4

    Article  Google Scholar 

  35. Lin T-P, de Dear R, Hwang R-L (2011) Effect of thermal adaptation on seasonal outdoor thermal comfort. Int J Climatol 31(2):302–312. https://doi.org/10.1002/joc.2120

    Article  Google Scholar 

  36. Lobaccaro G, Acero JA (2015) Comparative analysis of green actions to improve outdoor thermal comfort inside typical urban street canyons. Urban Clim 14:251–267. https://doi.org/10.1016/j.uclim.2015.10.002

    Article  Google Scholar 

  37. Long Y, Dev N, Mukul T, Daniel A, Fei C, Fuqiang T, Guangheng N (2016) Contrasting impacts of urban forms on the future thermal environment: example of Beijing metropolitan area. Environ Res Lett 11(3):034018

    Article  Google Scholar 

  38. Maller A (1998) Emerging urban form types in a city of the American Middle West. J Urban Des 3(2):137–150. https://doi.org/10.1080/13574809808724422

    Article  Google Scholar 

  39. Matzarakis A (2014) Transfer of climate data for tourism applications -the Climate-Tourism/Transfer-Information-Scheme. Sustain Environ Res 24(4):273–280

    Google Scholar 

  40. Matzarakis A, Mayer H (1996) Another kind of environmental stress: thermal stress. WHO Colloborating Centre for Air Quality Management and Air Pollution Control Newsletter 18:7–10

    Google Scholar 

  41. Meir P, Grace J, Miranda A (2000) Photographic method to measure the vertical distribution of leaf area density in forests. Agric For Meteorol 102(2-3):105–111

    Article  Google Scholar 

  42. Middel A, Häb K, Brazel AJ, Martin CA, Guhathakurta S (2014) Impact of urban form and design on mid-afternoon microclimate in Phoenix Local Climate Zones. Landsc Urban Plan 122(Supplement C):16–28. https://doi.org/10.1016/j.landurbplan.2013.11.004

    Article  Google Scholar 

  43. Morakinyo TE, Ouyang W, Lau KK-L, Ren C, Ng E (2020) Right tree, right place (urban canyon): tree species selection approach for optimum urban heat mitigation - development and evaluation. Sci Total Environ 719:137461. https://doi.org/10.1016/j.scitotenv.2020.137461

    CAS  Article  Google Scholar 

  44. Moughtin C (2003). urban design: street and square: Architectural Press.

  45. Muniz-Gäal LP, Pezzuto CC, de Carvalho MFH, Mota LTM (2020) Urban geometry and the microclimate of street canyons in tropical climate. Build Environ 169:106547. https://doi.org/10.1016/j.buildenv.2019.106547

    Article  Google Scholar 

  46. Niu, J., Liu, J., Lee, T.-C., Lin, Z., Mak, C., Tse, K.-T., ..., Kwok, K. C. S. (2015). A new method to assess spatial variations of outdoor thermal comfort. Build Environ 91, 263-270. https://doi.org/10.1016/j.buildenv.2015.02.017

  47. Oliveira V (2016) Urban morphology an introduction to the study of the physical form of cities. Springer International Publishing, Switzerland

    Google Scholar 

  48. Park CY, Lee DK, Asawa T, Murakami A, Kim HG, Lee MK, Lee HS (2019) Influence of urban form on the cooling effect of a small urban river. Landsc Urban Plan 183:26–35. https://doi.org/10.1016/j.landurbplan.2018.10.022

    Article  Google Scholar 

  49. Rahman MA, Stratopoulos LMF, Moser-Reischl A, Zölch T, Häberle K-H, Rötzer T, Pretzsch H, Pauleit S (2020) Traits of trees for cooling urban heat islands: a meta-analysis. Build Environ 170:106606. https://doi.org/10.1016/j.buildenv.2019.106606

    Article  Google Scholar 

  50. Rodríguez-Algeciras J, Tablada A, Matzarakis A (2018) Effect of asymmetrical street canyons on pedestrian thermal comfort in warm-humid climate of Cuba. Theor Appl Climatol 133(3):663–679. https://doi.org/10.1007/s00704-017-2204-8

    Article  Google Scholar 

  51. Rui L, Buccolieri R, Gao Z, Gatto E, Ding W (2019) Study of the effect of green quantity and structure on thermal comfort and air quality in an urban-like residential district by ENVI-met modelling. Build Simul 12(2):183–194. https://doi.org/10.1007/s12273-018-0498-9

    Article  Google Scholar 

  52. Salata F, Golasi I, de Lieto Vollaro R, de Lieto Vollaro A (2016a) Outdoor thermal comfort in the Mediterranean area. A transversal study in Rome, Italy. Build Environ 96:46–61. https://doi.org/10.1016/j.buildenv.2015.11.023

    Article  Google Scholar 

  53. Salata F, Golasi I, De Lieto Vollaro R, Vollaro A (2016b) Urban microclimate and outdoor thermal comfort. A proper procedure to fit ENVI-met simulation outputs to experimental data. Sustain Cities Soc 26:318–343. https://doi.org/10.1016/j.scs.2016.07.005

    Article  Google Scholar 

  54. Saud Alznafer BM (2014). the impact of neighbourhood geometries on outdoor thermal comfort and energy consumption from urban dwellings a case study of the riyadh city, the kingdom of saudi arabia. (Doctor Of Philosophy), Cardiff University

  55. Savic, S., Marković, V., Secerov, I., Pavic, D., Arsenovic, D., Milošević, D., ... Pantelić, M. (2018). Heat wave risk assessment and mapping in urban areas: case study for a mid-sized Central European city, Novi Sad (Serbia). Nat Hazards, 91, 891-911. https://doi.org/10.1007/s11069-017-3160-4

  56. Schrijvers PJC, Jonker HJJ, de Roode SR, Kenjereš S (2016) The effect of using a high-albedo material on the Universal Temperature Climate Index within a street canyon. Urban Clim 17:284–303. https://doi.org/10.1016/j.uclim.2016.02.005

    Article  Google Scholar 

  57. Setaih K, Hamza N, Mohammed MA, Dudek S, Townshend T (2014) Cfd modeling as a tool for assessing outdoor thermal comfort conditions in urban settings in hot arid Climates. J Inform Technol Constr 19:248–269

    Google Scholar 

  58. Shahmohamadi P, Che-Ani AI, Etessam I, Maulud KNA, Tawil NM (2011) Healthy environment: the need to mitigate urban heat island effects on human health. Proc Eng 20(Supplement C):61–70. https://doi.org/10.1016/j.proeng.2011.11.139

    Article  Google Scholar 

  59. Shashua-Bar L, Pearlmutter D, Erell E (2011) The influence of trees and grass on outdoor thermal comfort in a hot-arid environment. Int J Climatol 31(10):1498–1506. https://doi.org/10.1002/joc.2177

    Article  Google Scholar 

  60. Sodoudi S, Shahmohamadi P, Vollack K, Cubasch U, Che-Ani AI (2014) Mitigating the urban heat island effect in megacity tehran. Adv Meteorol 2014:1–19. https://doi.org/10.1155/2014/547974

    Article  Google Scholar 

  61. Spaeth JL (1975) Path analysis: introductory multivariate analysis. McCutchan, Berkeley

    Google Scholar 

  62. Stage F, Carter H, Nora A (2004) Path analysis: an introduction and analysis of a decade of research. J Educ Res 98:5–13. https://doi.org/10.3200/JOER.98.1.5-13

    Article  Google Scholar 

  63. Statistical Center of Iran (2016) Population and Housing Census results Statistical Center of Iran. Population and Housing Census results

  64. Stewart ID, Oke T (2012) Local climate zones for urban temperature studies. Bull Am Meteorol Soc 93:1879–1900. https://doi.org/10.1175/BAMS-D-11-00019.1

    Article  Google Scholar 

  65. Streiner DL (1996) Maintaining Standards: Differences between the standard deviation and standard error, and when to use each. Can J Psychiatry 41(8):498–502. https://doi.org/10.1177/070674379604100805

    CAS  Article  Google Scholar 

  66. Taleghani M, Kleerekoper L, Tenpierik M, van den Dobbelsteen A (2015) Outdoor thermal comfort within five different urban forms in the Netherlands. Build Environ 83(Supplement C):65–78. https://doi.org/10.1016/j.buildenv.2014.03.014

    Article  Google Scholar 

  67. Thorsson S, Rayner D, Lindberg F, Monteiro A, Katzschner L, Lau KK-L, Campe S, Katzschner A, Konarska J, Onomura S, Velho S, Holmer B (2017) Present and projected future mean radiant temperature for three European cities. Int J Biometeorol 61(9):1531–1543. https://doi.org/10.1007/s00484-017-1332-2

    Article  Google Scholar 

  68. Tsai Y-H (2005) Quantifying urban form: compactness versus ‘sprawl’. Urban Stud 42(1):141–161. https://doi.org/10.1080/0042098042000309748

    Article  Google Scholar 

  69. Unger J (2009) Connection between urban heat island and sky view factor approximated by a software tool on a 3D urban database. Int J Environ Pollut 36:59–80. https://doi.org/10.1504/IJEP.2009.021817

    CAS  Article  Google Scholar 

  70. Ünlü T (2011) Towards the conceptualization of piecemeal urban transformation: the case of Mersin, Turkey. Built Environ 37(4):445–461

    Article  Google Scholar 

  71. Vasilikou C, Nikolopoulou M (2019) Outdoor thermal comfort for pedestrians in movement: thermal walks in complex urban morphology. Int J Biometeorol (Special Issue:Subjective approaches to thermal perception). 1-15 64:277–291. https://doi.org/10.1007/s00484-019-01782-2

    Article  Google Scholar 

  72. Wai K-M, Yuan C, Lai A, Yu PKN (2020) Relationship between pedestrian-level outdoor thermal comfort and building morphology in a high-density city. Sci Total Environ 708:134516. https://doi.org/10.1016/j.scitotenv.2019.134516

    CAS  Article  Google Scholar 

  73. Wang Y, Bakker F, de Groot R, Wortche H, Leemans R (2015) Effects of urban trees on local outdoor microclimate: synthesizing field measurements by numerical modelling. Urban Ecosyst 18(4):1305–1331. https://doi.org/10.1007/s11252-015-0447-7

    Article  Google Scholar 

  74. Xu M, Hong B, Mi J, Yan S (2018) Outdoor thermal comfort in an urban park during winter in cold regions of China. Sustain Cities Soc 43:208–220. https://doi.org/10.1016/j.scs.2018.08.034

    Article  Google Scholar 

  75. Xuan Y, Yang G, Li Q, Mochida A (2016) Outdoor thermal environment for different urban forms under summer conditions. Build Simul 9(3):281–296. https://doi.org/10.1007/s12273-016-0274-7

    Article  Google Scholar 

  76. Yahia MW, Johansson E, Thorsson S, Lindberg F, Rasmussen MI (2017) Effect of urban design on microclimate and thermal comfort outdoors in warm-humid Dar es Salaam, Tanzania. Int J Biometeorol 62:373–385. https://doi.org/10.1007/s00484-017-1380-7

    Article  Google Scholar 

  77. Yang B, Olofsson T, Nair G, Kabanshi A (2017) Outdoor thermal comfort under subarctic climate of north Sweden – a pilot study in Umeå. Sustain Cities Soc 28:387–397. https://doi.org/10.1016/j.scs.2016.10.011

    Article  Google Scholar 

  78. Yang L, Qian F, Song D-X, Zheng K-J (2016) Research on urban heat-island effect. Proc Eng 169(Supplement C):11–18. https://doi.org/10.1016/j.proeng.2016.10.002

    Article  Google Scholar 

  79. Yıldırım M (2020) Shading in the outdoor environments of climate-friendly hot and dry historical streets: the passageways of Sanliurfa, Turkey. Environ Impact Assess Rev 80:106318. https://doi.org/10.1016/j.eiar.2019.106318

    Article  Google Scholar 

  80. Yin C, Yuan M, Lu Y, Huang Y, Liu Y (2018) Effects of urban form on the urban heat island effect based on spatial regression model. Sci Total Environ 634:696–704. https://doi.org/10.1016/j.scitotenv.2018.03.350

    CAS  Article  Google Scholar 

  81. Ying X (2019) An overview of overfitting and its solutions. J Phys Conf Ser 1168:022022. https://doi.org/10.1088/1742-6596/1168/2/022022

    Article  Google Scholar 

  82. Zaker Haghighi K, Majedi H, Habib F (2010) The effective indexes on urban fabric typology. Hoviat shahr 4(7):105–112

    Google Scholar 

  83. Zhang Y, Du X, Shi Y (2017) Effects of street canyon design on pedestrian thermal comfort in the hot-humid area of China. Int J Biometeorol 61(8):1421–1432. https://doi.org/10.1007/s00484-017-1320-6

    Article  Google Scholar 

  84. Zhao Q, Sailor DJ, Wentz EA (2018) Impact of tree locations and arrangements on outdoor microclimates and human thermal comfort in an urban residential environment. Urban For Urban Green 32:81–91. https://doi.org/10.1016/j.ufug.2018.03.022

    Article  Google Scholar 

  85. Zheng S, Guldmann J-M, Liu Z, Zhao L, Wang J, Pan X, Zhao D (2020) Predicting the influence of subtropical trees on urban wind through wind tunnel tests and numerical simulations. Sustain Cities Soc 57:102116. https://doi.org/10.1016/j.scs.2020.102116

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Iranian National Science Foundation (INSF) under Contract No. 96014684.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elham Sanagar Darbani.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sanagar Darbani, E., Monsefi Parapari, D., Boland, J. et al. Impacts of urban form and urban heat island on the outdoor thermal comfort: a pilot study on Mashhad. Int J Biometeorol (2021). https://doi.org/10.1007/s00484-021-02091-3

Download citation

Keywords

  • Outdoor thermal comfort
  • Physiological equivalent temperature (PET)
  • Urban heat island (UHI)
  • Urban form
  • Envi-MET