Akanji AO, Oputa RA (1991) The effect of ambient temperature on glucose tolerance and its implications for the tropics. Trop Geogr Med 43(3):283.281
Google Scholar
Alves JED, Cavenaghi S (2012) Transições urbanas e da fecundidade e mudança dos arranjos familiares no Brasil. Cadernos de Estudos Sociais
Anderson BG, Bell ML (2009) Weather-related mortality: how heat, cold, and heat waves affect mortality in the United States. Epidemiology 20:205–213. https://doi.org/10.1097/EDE.0b013e318190ee08
Article
Google Scholar
Anderson GB, Dominici F, Wang Y, McCormack MC, Bell ML, Peng RD (2013) Heat-related Emergency Hospitalizations for Respiratory Diseases in the Medicare Population. American Journal of Respiratory and Critical Care Medicine 187(10):1098–1103
Antunes L, Silva SP, Marques J, Nunes B, Antunes S (2017) The effect of extreme cold temperatures on the risk of death in the two major Portuguese cities. Int J Biometeorol 61:127–135. https://doi.org/10.1007/s00484-016-1196-x
Article
Google Scholar
Ardiles LG, Tadano YS, Costa S, Urbina V, Capucim MN, da Silva I, Braga A, Martins JA, Martins LD (2017) Negative binomial regression model for analysis of the relationship between hospitalization and air pollution. Atmos Pollut Res 9:333–341. https://doi.org/10.1016/j.apr.2017.10.010
CAS
Article
Google Scholar
Bell ML, O’Neill MS, Ranjit N et al (2008) Vulnerability to heat-related mortality in Latin America: a case-crossover study in São Paulo, Brazil, Santiago, Chile and Mexico City, Mexico. Int J Epidemiol 37:796–804. https://doi.org/10.1093/ije/dyn094
Article
Google Scholar
Bitencourt DP, Fuentes MV, Maia PA, Amorim FT (2016) Frequência, Duração, Abrangência Espacial e Intensidade das Ondas de Calor no Brasil. Rev Bras Meteorol 31:506–517. https://doi.org/10.1590/0102-778631231420150077
Article
Google Scholar
Cavenaghi SM, Alves JED (2016) Qualidade das informações sobre fecundidade no Censo Demográfico de 2010. Rev Bras Estud Popul 33:189–206. https://doi.org/10.20947/s0102-309820160010
Article
Google Scholar
Ceccherini G, Russo S, Ameztoy I et al (2016) Magnitude and frequency of heat and cold waves in recent decades: the case of South America. Nat Hazards Earth Syst Sci 16:821–831. https://doi.org/10.5194/nhess-16-821-2016
Article
Google Scholar
Charkha N, Ghatge A, Sharma P, Attar VZ, Patil AB (2013) Estimating risk of mortality from cardiovascular diseases using negative binomial regression. Epidemiol 3:3–6. https://doi.org/10.4172/2161-1165.1000127
Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nat Clim Chang 2:491–493. https://doi.org/10.1038/nclimate1452
Article
Google Scholar
D’Ippoliti D, Michelozzi P, Marino C et al (2010) The impact of heat waves on mortality in 9 European cities: results from the EuroHEAT project. Environ Health 9:37. https://doi.org/10.1186/1476-069X-9-37
Dereczynski C, Silva WL, Marengo J (2013) Detection and projections of climate change in Rio de Janeiro, Brazil. Am J Clim Chang 02:25–33. https://doi.org/10.4236/ajcc.2013.21003
Article
Google Scholar
Fischer EM, Knutti R (2015) Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat Clim Chang 5:560–564. https://doi.org/10.1038/nclimate2617
Article
Google Scholar
Founda D, Santamouris M (2017) Synergies between Urban Heat Island and heat waves in Athens (Greece), during an extremely hot summer (2012). Sci Rep 7:1–11. https://doi.org/10.1038/s41598-017-11407-6
CAS
Article
Google Scholar
Garcia-Herrera R, Díaz J, Trigo RM, Luterbacher J, Fischer EM (2010) A review of the European summer heat wave of 2003. Crit Rev Environ Sci Technol 40:267–306. https://doi.org/10.1080/10643380802238137
Article
Google Scholar
Gasparrini A, Armstrong B (2011) The impact of heat waves on mortality. Epidemiology 22:68–73. https://doi.org/10.1097/EDE.0b013e3181fdcd99
Article
Google Scholar
Gasparrini A, Guo Y, Hashizume M (2015) Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet 386:369–375. https://doi.org/10.1016/S0140-6736(14)62114-0
Article
Google Scholar
Gasparrini A, Guo Y, Sera F et al (2017) Projections of temperature-related excess mortality under climate change scenarios. Lancet Planet Heal 1:e360–e367. https://doi.org/10.1016/S2542-5196(17)30156-0
Geirinhas JL, Trigo RM, Libonati R, Coelho CAS, Palmeira AC (2018) Climatic and synoptic characterization of heat waves in Brazil. Int J Climatol 38:1760–1776. https://doi.org/10.1002/joc.5294
Article
Google Scholar
Geirinhas JL, Trigo RM, Libonati R, Castro LCO, Sousa PM, Coelho CAS, Peres LF, Magalhães M d AFM (2019) Characterizing the atmospheric conditions during the 2010 heatwave in Rio de Janeiro marked by excessive mortality rates. Sci Total Environ 650:796–808. https://doi.org/10.1016/j.scitotenv.2018.09.060
CAS
Article
Google Scholar
Guo Y, Gasparrini A, Li S et al (2018) Quantifying excess deaths related to heatwaves under climate change scenarios: a multicountry time series modelling study. PLoS Med 15:1–17. https://doi.org/10.1371/journal.pmed.1002629
Article
Google Scholar
Hajat S, Armstrong B, Baccini M, Biggeri A, Bisanti L, Russo A, Paldy A, Menne B, Kosatsky T (2006) Impact of high temperatures on mortality: is there an added heat wave effect? Epidemiology 17(6):632–638. https://doi.org/10.1097/01.ede.0000239688.70829.63
Article
Google Scholar
Hajat S, Kovats RS, Lachowycz K (2007) Heat-related and cold-related deaths in England and Wales: who is at risk? Occup Environ Med 64:93–100. https://doi.org/10.1136/oem.2006.029017
CAS
Article
Google Scholar
Han J, Liu S, Zhang J et al (2017) The impact of temperature extremes on mortality: a time-series study in Jinan, China. BMJ Open 7:1–8. https://doi.org/10.1136/bmjopen-2016-014741
Article
Google Scholar
Hannart A, Vera C, Otto FEL, Cerne B (2015) Causal influence of anthropogenic forcings on the argentinian heat wave of December 2013. Bull Am Meteorol Soc 96(12). https://doi.org/10.1175/BAMS-D-15-00137.1
Hatvani-Kovacs G, Belusko M, Pockett J, Boland J (2016) Can the excess heat factor indicate heatwave-related morbidity? A case study in Adelaide, South Australia. Ecohealth 13:100–110. https://doi.org/10.1007/s10393-015-1085-5
Article
Google Scholar
Herold N, Alexander L, Green D, Donat M (2017) Greater increases in temperature extremes in low versus high income countries. Environ Res Lett 12. https://doi.org/10.1088/1748-9326/aa5c43
IBGE (2010) Demographic census. Instituto Brasileiro de Geografia e Estatística. https://censo2010.ibge.gov.br. Accessed Jan 2019
IBGE (2018) Projeções de população: Brasil e unidades de federação: revisão 2018 / IBGE, Coordenação de População e Indicadores Sociais. https://biblioteca.ibge.gov.br/visualizacao/livros/liv101597.pdf
International Diabetes Federation (2013) IDF Diabetes Atlas Update. http://www.idf.org/diabetesatlas/introduction. Accessed Sept 2019
IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 582
Google Scholar
IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, 1585 pp
Google Scholar
IPCC (2018) Global warming of 1.5°C. A special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of the strengthening the global response to the threat of climate change, sustainable development, and effort to eradicate
Iuliano AD, Roguski KM, Chang HH et al (2018) Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. Lancet 391(10127):1285–1300. https://doi.org/10.1016/S0140-6736(17)33293-2
Kenny GP, Yardley J, Brown C, Sigal RJ, Jay O (2010) Heat stress in older individuals and patients with common chronic diseases. Canadian Medical Association Journal 182(10):1053–1060
Koivisto VA, Fortney S, Hendler R, Felig P (1981) A rise in ambient temperature augments insulin absorption in diabetic patients. Metabolism 30:402–405. https://doi.org/10.1016/0026-0495(81)90122-0
CAS
Article
Google Scholar
Kovats RS, Hajat S (2008) Heat stress and public health: a critical review. Annu Rev Public Health 29:41–55. https://doi.org/10.1146/annurev.publhealth.29.020907.090843
Article
Google Scholar
Langlois N, Herbst J, Mason K, Nairn J, Byard RW (2013) Journal of Forensic and Legal Medicine Using the Excess Heat Factor (EHF) to predict the risk of heat related deaths. J Forensic Legal Med 20:408–411. https://doi.org/10.1016/j.jflm.2012.12.005
Langrish JP, Mills NL, Bath LE, Warner P, Webb DJ, Kelnar CJ, Critchley HO, Newby DE, Wallace WH (2009) Cardiovascular effects of physiological and standard sex steroid replacement regimens in premature ovarian failure. Hypertension 53:805–811. https://doi.org/10.1161/HYPERTENSIONAHA.108.126516
CAS
Article
Google Scholar
Leon LR, Helwig BG (2010) Heat stroke: role of the systemic inflammatory response. J Appl Physiol 109:1980–1988. https://doi.org/10.1152/japplphysiol.00301.2010
CAS
Article
Google Scholar
Leung YK, Yip KM, Yeung KH (2008) Relationship between thermal index and mortality in Hong Kong. Meteorol Appl 15:399–409. https://doi.org/10.1002/met.82
Article
Google Scholar
Lucena AJ, Rotunno Filho OC, França JRA et al (2013) Urban climate and clues of heat island events in the metropolitan area of Rio de Janeiro. Theor Appl Climatol 111:497–511. https://doi.org/10.1007/s00704-012-0668-0
Mazdiyasni O, Sengupta A, Mehran A et al (2017) Increasing probability of mortality during Indian heat waves. Sci Adv 3:e1700066. https://doi.org/10.1126/sciadv.1700066
Article
Google Scholar
McMichael AJ, Woodruff RE, Hales S (2006) Climate change and human health: present and future risks. Lancet 367:859–869. https://doi.org/10.1016/S0140-6736(06)68079-3
Article
Google Scholar
Mora C, Dousset B, Caldwell IR et al (2017) Global risk of deadly heat. Nat Clim Chang 7:501–506. https://doi.org/10.1038/nclimate3322
Muggeo VM, Hajat S (2009) Modelling the non-linear multiple-lag effects of ambient temperature on mortality in Santiago and Palermo: a constrained segmented distributed lag approach. Occup Environ Med 66:584–591. https://doi.org/10.1136/oem.2007.038653
CAS
Article
Google Scholar
Nairn J, Fawcett R, Ray D (2009) Defining and predicting excessive heat events, a national system. Understanding high impact weather. CAWCR technical report 017. Bureau of Meteorology, Melbourne, pp 83–86
Google Scholar
Papalexiou SM, AghaKouchak A, Trenberth KE, Foufoula-Georgiou E (2018) Global, regional, and megacity trends in the highest temperature of the year: diagnostics and evidence for accelerating trends. Earth’s Future 6:71–79. https://doi.org/10.1002/2017EF000709
Article
Google Scholar
Peres LF, Lucena AJ, Rotunno Filho OC, França JRA (2018) The urban heat island in Rio de Janeiro, Brazil, in the last 30 years using remote sensing data. Int J Appl Earth Obs Geoinf 64:104–116. https://doi.org/10.1016/j.jag.2017.08.012
Perkins SE, Alexander LV (2013) On the measurement of heat waves. J Clim 26:4500–4517. https://doi.org/10.1175/JCLI-D-12-00383.1
Article
Google Scholar
PwC (2011) Protecting human health and safety during severe and extreme heat events, a national framework. Report for the Commonwealth Government, PricewaterhouseCoopers Australia. http://www.pwc.com.au/industry/government/assets/extreme-heat-events-nov... Accessed Jan 2019
Raei E, Nikoo MR, Aghakouchak A, Mazdiyasni O, Sadegh M (2018) GHWR, a multi-method global heatwave and warm-spell record and toolbox. Sci Data 5:1–15. https://doi.org/10.1038/sdata.2018.206
Article
Google Scholar
Rizwan AM, Dennis LYC, Liu C (2008) A review on the generation, determination and mitigation of Urban Heat Island. J Environ Sci 20:120–128. https://doi.org/10.1016/S1001-0742(08)60019-4
CAS
Article
Google Scholar
Russo S, Sillmann J, Sterl A (2017) Humid heat waves at different warming levels. Sci Rep 7:7477. https://doi.org/10.1038/s41598-017-07536-7
CAS
Article
Google Scholar
Rusticucci M, Kyselý J, Almeira G, Lhotka O (2016) Long-term variability of heat waves in Argentina and recurrence probability of the severe 2008 heat wave in Buenos Aires. Theor Appl Climatol 124:679–689. https://doi.org/10.1007/s00704-015-1445-7
Article
Google Scholar
Rusticucci M, Barrucand M, Collazo S (2017) Temperature extremes in the Argentina central region and their monthly relationship with the mean circulation and ENSO phases. Int J Climatol 37:3003–3017. https://doi.org/10.1002/joc.4895
Article
Google Scholar
Scalley BD, Spicer T, Jian L, Xiao J, Nairn J, Robertson A, Weeramanthri T (2015) Responding to heatwave intensity: excess heat factor is a superior predictor of health service utilisation and a trigger for heatwave plans. Aust N Z J Public Health 39(6):582–587. https://doi.org/10.1111/1753-6405.12421
Article
Google Scholar
Schifano P, Cappai G, De Sario M, Michelozzi P, Marino C, Bargagli AM, Peruci CA (2009) Susceptibility to heat wave-related mortality: a follow-up study of a cohort of elderly in Rome. Environ Health 8:50. https://doi.org/10.1186/1476-069x-8-50
Article
Google Scholar
Sharovsky R, César LAM, Ramires JAF (2004) Temperature, air pollution, and mortality from myocardial infarction in São Paulo, Brazil. Braz J Med Biol Res 37:1651–1657. https://doi.org/10.1590/S0100-879X2004001100009
CAS
Article
Google Scholar
Shibuya K, Yano E (2005) Regression analysis of trends in mortality from hepatocellular carcinoma in Japan, 1972–2001. Int J Epidemiol 34:397–402. https://doi.org/10.1093/ije/dyh358
Article
Google Scholar
Son JY, Lee JT, Brooke Anderson G, Bell ML (2012) The impact of heat waves on mortality in seven major cities in Korea. Environ Health Perspect 120:566–571. https://doi.org/10.1289/ehp.1103759
Article
Google Scholar
Son JY, Gouveia N, Bravo MA, de Freitas CU, Bell ML (2016) The impact of temperature on mortality in a subtropical city: effects of cold, heat, and heat waves in São Paulo, Brazil. Int J Biometeorol 60:113–121. https://doi.org/10.1007/s00484-015-1009-7
Article
Google Scholar
Sun PC, Lin HD, Jao SH, Chan RC, Kao MJ, Cheng CK (2008) Thermoregulatory sudomotor dysfunction and diabetic neuropathy develop in parallel in at-risk feet. Diabet Med 25(4):413–418. https://doi.org/10.1111/j.1464-5491.2008.02395.x
CAS
Article
Google Scholar
Trigo RM, Ramos AM, Nogueira PJ, Santos FD, Garcia-Herrera R, Gouveia C, Santo FE (2009) Evaluating the impact of extreme temperature based indices in the 2003 heatwave excessive mortality in Portugal. Environ Sci Pol 12:844–854. https://doi.org/10.1016/j.envsci.2009.07.007
Article
Google Scholar
United Nations (2014) Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2014 Revision, Highlights. (ST/ESA/SER.A/352)
Urban A, Hanzlíková H, Kyselý J, Plavcová E (2017) Impacts of the 2015 heat waves on mortality in the Czech Republic-a comparison with previous heat waves. Int J Environ Res Public Health 14:1–19. https://doi.org/10.3390/ijerph14121562
Article
Google Scholar
Vandentorren S, Bretin P, Zeghnoun A, Mandereau-Bruno L, Croisier A, Cochet C, Ribéron J, Siberan I, Declercq B, Ledrans M (2006) August 2003 heat wave in France: risk factors for death of elderly people living at home. Eur J Pub Health 16:583–591. https://doi.org/10.1093/eurpub/ckl063
CAS
Article
Google Scholar
Ver Hoef JM, Boveng PL (2007) Quasi-poisson vs. negative binomial regression: how should we model overdispersed count data? Publications, agencies and staff of the U.S. Department of Commerce 142. http://digitalcommons.unl.edu/usdeptcommercepub/142
Watts N, Amann M, Ayeb-Karlsson S et al (2018) The Lancet Countdown on health and climate change: from 25 years of inaction to a global transformation for public health. Lancet 391:581–630. https://doi.org/10.1016/S0140-6736(17)32464-9
Wilson A, Reich BJ, Nolte CG, Spero TL, Hubbell B, Rappold AG (2017) Climate change impacts on projections of excess mortality at 2030 using spatially varying ozone-temperature risk surfaces. J Expo Sci Environ Epidemiol 27:118–124. https://doi.org/10.1038/jes.2016.14
Article
Google Scholar
WMO and WHO (2015) Heatwaves and health: guidance on warning system development. World Health Organization- No 1142. https://www.who.int/globalchange/publications/Web-release-WHO-WMO-guidance-heatwave-and-health.pdf?ua=1. Accessed Sept 2019
Yang J, Yin P, Zhou M, Ou C, Li M, Liu Y, Gao J, Chen B, Liu J, Bai L, Liu Q (2016) The effect of ambient temperature on diabetes mortality in China: a multi-city time series study. Sci Total Environ 543:75–82. https://doi.org/10.1016/j.scitotenv.2015.11.014
CAS
Article
Google Scholar
Yu W, Vaneckova P, Mengersen K, Pan X, Tong S (2010) Is the association between temperature and mortality modified by age, gender and socio-economic status? Sci Total Environ 408:3513–3518. https://doi.org/10.1016/j.scitotenv.2010.04.058
CAS
Article
Google Scholar
Zanobetti A, Schwartz J (2008) Temperature and mortality in nine US cities. Epidemiology 19:563–570. https://doi.org/10.1097/EDE.0b013e31816d652d
Article
Google Scholar
Zhang X, Alexander L, Hegerl GC, Jones P, Tank AK, Peterson TC, Trewin B, Zwiers FW (2011) Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip Rev Clim Chang 2:851–870. https://doi.org/10.1002/wcc.147
Article
Google Scholar
Zhao L, Oppenheimer M, Zhu Q, Baldwin JW, Ebi KL, Bou-Zeid E, Guan K, Liu X (2018) Interactions between urban heat islands and heat waves - supplementary information. Environ Res Lett 13:034003. https://doi.org/10.1088/1748-9326/aa9f73
Article
Google Scholar